
Dr. Akhlaq Hussain

Chapter 2

Lecture 1

Lagrange's Mechanics



2

2.1 Constraints 

Constraints are the geometrical or kinematical restrictions on the motion of the

particle OR system of the particles.

Such system is called Constrained systems and their motion is known as 

constrained or restricted motion. 

Rigid body → distance between any two particles remains unchanged.

Gas molecules → within the container is restricted by the walls of the vessels.

Classification of Constraints 

Holonomic constraints:- Constraints are said to be holonomic if the conditions

of all the constraints can be expressed as equations connecting the coordinates of

the particles and possible time in the form

𝑓 ( 𝑟1, 𝑟2, 𝑟3…… . . , 𝑟𝑛, 𝑡) = 0 (2.1)
In Cartesian coordinates equation (2.1) can be written as,

𝑓 (𝑥1, 𝑦1, 𝑧1; 𝑥2, 𝑦2, 𝑧2, ……… 𝑥𝑛, 𝑦𝑛, 𝑧𝑛,
𝑡) = 0 (2.2)

ri - rj
2 - Cij

2 =0
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2.1 Constraints 

Examples of non-holonomic constraints

1. Constraints involved in the motion of a particle placed on the

surface of a solid sphere r2 - a2  0. (2.4)

2. An object rolling on the rough surface without slipping.

3. Constraints involved in the motion of gas molecules in a

container.

r2 - a2  0

Non-holonomic constraints: - If the conditions of the constraints can not be

expressed as equations connecting the coordinates of particles as in case of

holonomic, they are called as non-holonomic constraints.

The conditions of these constraints are expressed in the form of inequalities.

f ( r1,r2,r3……..,rn,t)≠ 0 (2.3)
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Constraints 

Scleronomic and Rheonomic Constraints: - The constraints which

are independent of time are called Scleronomic constraints and the

constraints which contain time explicitly, called rheonomic constraints

Examples: - A bead sliding on a rigid curved wire fixed in space is

obviously subjected to Scleronomic constraints and if the wire is

moving is prescribed fashion the constraints become Rheonomic.

Consider a pendulum of constant length and fixe pivot point

𝑥2 + 𝑦2 − 𝐿2 = 0 Scleronomic Constraint

If the pivot point is moving along x axis

𝑥′ = 𝑥𝑜 cos𝑤𝑡

The equation of motion will be

𝑥 − 𝑥𝑜 cos𝑤𝑡
2 + 𝑦2 − 𝐿2 = 0 Rheonomic Constraint

′

𝐿
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Problems Due to Constraints

1. The coordinates are no longer independent.

They are connected by equation of constraints for rigid body

ri - rj
2 - Cij

2 =0

𝑥2 + 𝑦2 − 𝐿2 = 0

2. To apply Newton’s 2nd Law, we need total force acting on each particle. Force of

Constraints are not known or easily calculated.

Forces are vector quantities; the vector nature of forces also makes it difficult to

solve the problem
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Generalized Coordinates

How to solve problems associated with Constraints…..

Consider a system of N-particles. If each particle has 3-degrees of freedom.

Total freedom of system is 3N

If k is the number of holonomic constraints on the system.

The total number of independent coordinates s = 3𝑁 − 𝑘

We define “s” number of independent coordinates

𝑞1, 𝑞2, 𝑞3, …… 𝑞𝑠, or just 𝑞𝑖 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,3,4… 𝑠 )

Such that

𝒓𝑖 = 𝒓𝑖 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑠

𝑞𝑖 = 𝑞𝑖 𝑟1, 𝑟2, 𝑟3, ……𝑟𝑛

𝑥 = 𝑟𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠𝜑

𝑥 = 𝑥 𝑟, 𝜃, 𝜑

𝑦 = 𝑟𝑠𝑖𝑛 𝜃 sin𝜑

𝑦 = 𝑦 𝑟, 𝜃, 𝜑

𝑧 = 𝑟𝑐𝑜𝑠 𝜃

𝑧 = 𝑧 𝑟, 𝜃
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Generalized Coordinates

In case of pendulum

𝑟 = 𝐿 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Independent coordinate is 𝑞1 = 𝜃

For spherical pendulum with constant length

The coordinates 𝑟, 𝜃, 𝜙 since r = constant

We have

𝑞1, 𝑞2 = 𝜃,𝜙 are independent coordinates,

To overcome the second difficulty, we should formulate the mechanics such that the

unknow constraint forces disappeared in calculation.

We will be using energy (K.E +P.E), Momentum and position to solve that system.
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Generalized Coordinates

Suppose a system of N-particles. If system has n-degree (n=3N-k) of freedom then we need

n-generalized coordinates 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛 to specify the configuration of holonomic

dynamical system. They may be cartesian or spherical polar coordinates etc.

The configuration of the system is expressed as function of the generalized coordinates.

𝒓𝑖 = 𝒓𝑖 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛, 𝑡

If the system moves from one configuration 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛, 𝑡 to a neighboring configuration

𝑞1 + 𝛿𝑞1, 𝑞2 + 𝛿𝑞2, 𝑞3 + 𝛿𝑞3, ……𝑞𝑛 + 𝛿𝑞𝑛

𝒓𝑖 + 𝜹𝒓𝑖 = 𝒓𝑖 𝑞1 + 𝛿𝑞1, 𝑞2 + 𝛿𝑞2, 𝑞3 + 𝛿𝑞3, ……𝑞𝑛 + 𝛿𝑞𝑛 where 𝛿𝑡 = 0

𝜕𝒓𝒊

𝜕𝑞1
𝛿𝑞1+

𝜕𝒓𝒊

𝜕𝑞2
𝛿𝑞2 +⋯⋯ ⋯⋯+

𝜕𝒓𝒊

𝜕𝑞𝑛
𝛿𝑞𝑛

𝜹𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗 (Virtual Displacement)

𝜹𝒓𝑖 =
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Virtual Work

virtual Displacement A virtual displacement is an arbitrary instantons, infinitesimal

displacement of a dynamical system. Independent of time and consistent with the

constraints of the system.

𝜹𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

Principle of virtual work

A system under workless constraints is in equilibrium under applied forces, if and

only if zero virtual work is done by the applied forces in an arbitrary infinitesimal

displacement satisfying constraints.

σ𝑖𝑭𝒊 ∙ 𝛿𝒓𝑖 = 0 where 𝑭𝒊 = 𝑭𝒊
(𝒆) +σ𝒋𝑭𝒋𝒊



The time derivative of the generalized coordinates is called generalized velocity

associated with co-ordinates for an unconstrained system, For a system with n-degree

of freedom and defined with configuration

𝒓𝑖 = 𝒓𝑖 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛, 𝑡

The velocity is

𝑑𝒓𝑖

𝑑𝑡
=

𝜕𝒓𝒊

𝜕𝑞1

𝑑𝑞1

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑞2

𝑑𝑞2

𝑑𝑡
+⋯+

𝜕𝒓𝒊

𝜕𝑞𝑛

𝑑𝑞𝑛

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑡

𝑑𝑡

𝑑𝑡

ሶ𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
ሶ𝑞𝑗 +

𝜕𝒓𝒊

𝜕𝑡

Where ሶ𝑞𝑗 is generalized velocity. 10

Generalized Velocity



Components of generalized acceleration are obtained by differentiating above equation

ሷ𝒓𝑖 =
𝑑 ሶ𝒓𝑖

𝑑𝑡
=

𝑑

𝑑𝑡
σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
ሶ𝑞𝑗 +

𝜕𝒓𝒊

𝜕𝑡
= σ𝑗=1

𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗

𝑑

𝑑𝑡
ሶ𝑞𝑗 + σ𝑗=1

𝑛 𝑑

𝑑𝑡

𝜕𝒓𝒊

𝜕𝑞𝑗
ሶ𝑞𝑗 +

𝑑

𝑑𝑡

𝜕𝒓𝒊

𝜕𝑡

ሷ𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
ሷ𝑞𝑗 + σ𝑗=1

𝑛 𝜕

𝜕𝑞𝑗

𝑑𝒓𝒊

𝑑𝑡
ሶ𝑞𝑗 +

𝜕

𝜕𝑡

𝑑𝒓𝒊

𝑑𝑡

ሷ𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
ሷ𝑞𝑗 + σ𝑗=1

𝑛 𝜕

𝜕𝑞𝑗

𝜕𝒓𝒊

𝜕𝑞1

𝑑𝑞1

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑞2

𝑑𝑞2

𝑑𝑡
+⋯+

𝜕𝒓𝒊

𝜕𝑞𝑛

𝑑𝑞𝑛

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑡
ሶ𝑞𝑗

+
𝜕

𝜕𝑡

𝜕𝒓𝒊

𝜕𝑞1

𝑑𝑞1

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑞2

𝑑𝑞2

𝑑𝑡
+⋯+

𝜕𝒓𝒊

𝜕𝑞𝑛

𝑑𝑞𝑛

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑡

ሷ𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
ሷ𝑞𝑗 + σ𝑗=1

𝑛 𝜕

𝜕𝑞𝑗
σ𝑘=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑘
ሶ𝑞𝑘 +

𝜕𝒓𝒊

𝜕𝑡
ሶ𝑞𝑗 +

𝜕

𝜕𝑡
σ𝑘=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑘
ሶ𝑞𝑘 +

𝜕𝒓𝒊

𝜕𝑡

ሷ𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
ሷ𝑞𝑗 + σ𝑗,𝑘=1

𝑛 𝜕2𝒓𝒊

𝜕𝑞𝑘𝜕𝑞𝑗
ሶ𝑞𝑘 ሶ𝑞𝑗 + σ𝑗=1

𝑛 𝜕2𝒓𝒊

𝜕𝑡𝜕𝑞𝑗
ሶ𝑞𝑗 + σ𝑘=1

𝑛 𝜕2𝒓𝒊

𝜕𝑡𝜕𝑞𝑘
ሶ𝑞𝑘 +

𝜕2𝒓𝒊

𝜕𝑡2

ሷ𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
ሷ𝑞𝑗 + σ𝑗,𝑘=1

𝑛 𝜕2𝒓𝒊

𝜕𝑞𝑘𝜕𝑞𝑗
ሶ𝑞𝑘 ሶ𝑞𝑗 + 2σ𝑗=1

𝑛 𝜕2𝒓𝒊

𝜕𝑡𝜕𝑞𝑗
ሶ𝑞𝑗 +

𝜕2𝒓𝒊

𝜕𝑡2

Above equation makes it clear that the cartesian components are not linear functions of components of

generalized acceleration ሷ𝑞𝑖 alone, but depend quadratically and linearly on generalized velocity

component as ሶ𝑞𝑖well 11

Generalized Acceleration
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D’ Alembert Principle 

The principle state that the particle will be in equilibrium under a force

𝑭𝒊 equal to the actual force plus a reverse effective force ሶ𝒑𝒊

𝑭𝒊 = ሶ𝒑𝒊

𝑭𝒊 − ሶ𝒑𝒊 = 𝟎

σ𝑖 𝑭𝒊 − ሶ𝒑𝒊 ∙ 𝛿𝒓𝑖 = 0 where 𝑭𝒊 = 𝑭𝒊
(𝒆) +σ𝒋𝑭𝒋𝒊

σ𝑖𝑭𝒊
(𝒆) ∙ 𝛿𝒓𝑖 + σ𝒊,𝒋𝑭𝒋𝒊 ∙ 𝛿𝒓𝑖 −σ𝑖 ሶ𝒑𝒊 ∙ 𝛿𝒓𝑖 = 0

If we restrict ourselves to workless constraints.

σ𝑖𝑭𝒊
(𝒆) ∙ 𝛿𝒓𝑖 + σ𝒊,𝒋𝑭𝒋𝒊 ∙ 𝛿𝒓𝑖 −σ𝑖 ሶ𝒑𝒊 ∙ 𝛿𝒓𝑖 = 0

σ𝑖 𝑭𝒊
(𝒆) − ሶ𝒑𝒊 ∙ 𝛿𝒓𝑖 = 0

𝟎



Suppose a system of N-particles having masses 𝑚1, 𝑚2, 𝑚3, ……𝑚𝑁 at position

𝑟1, 𝑟2, 𝑟3, …… 𝑟𝑁 respectively. If system has n-degree (n=3N-k) of freedom then

we need n-generalized coordinates 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛 to specify the configuration

of holonomic dynamical system.

𝒓𝑖 = 𝒓𝑖 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛, 𝑡

𝒅𝒓𝑖

𝒅𝒕
= ሶ𝒓𝑖 =

𝜕𝒓𝒊

𝜕𝑞1

𝑑𝑞1

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑞2

𝑑𝑞2

𝑑𝑡
+ ⋯+

𝜕𝒓𝒊

𝜕𝑞𝑛

𝑑𝑞𝑛

𝑑𝑡
+

𝜕𝒓𝒊

𝜕𝑡
= σ𝑗=1

𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
ሶ𝑞𝑗 +

𝜕𝒓𝒊

𝜕𝑡

𝜕 ሶ𝒓𝑖

𝜕 ሶ𝑞𝑗
=

𝜕

𝜕 ሶ𝑞𝑗

𝜕𝒓𝒊

𝜕𝑞1
ሶ𝑞1+

𝜕𝒓𝒊

𝜕𝑞2
ሶ𝑞2 +⋯+

𝜕𝒓𝒊

𝜕𝑞𝑗
ሶ𝑞𝑗 + ⋯+

𝜕𝒓𝒊

𝜕𝑞𝑛
ሶ𝑞𝑛 +

𝜕𝒓𝒊

𝜕𝑡
=

𝜕𝒓𝒊

𝜕𝑞𝑗

𝜕 ሶ𝑞𝑗

𝜕 ሶ𝑞𝑗
=

𝜕𝒓𝒊

𝜕𝑞𝑗

𝜕 ሶ𝒓𝑖

𝜕 ሶ𝑞𝑗
=

𝜕𝒓𝒊

𝜕𝑞𝑗
13

Lagrange’s Equation



Considering the virtual displacement =𝜹𝒓𝑖 =
𝜕𝒓𝒊

𝜕𝑞1
𝛿𝑞1+

𝜕𝒓𝒊

𝜕𝑞2
𝛿𝑞2 + ⋯ ⋯+

𝜕𝒓𝒊

𝜕𝑞𝑛
𝛿𝑞𝑛

𝜹𝒓𝑖 = σ𝑗=1
𝑛 𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

Let the virtual work done by force 𝑭𝑖 = 𝑚𝑖 ሷ𝒓𝑖

σ𝑖𝑭𝑖 . 𝜹𝒓𝑖 = σ𝑖,𝑗 𝑭𝑖 .
𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

σ𝑖=1
𝑁 𝑭𝑖 . 𝜹𝒓𝑖 = σ𝑗=1

𝑛 𝑄𝑗𝛿𝑞𝑗 …………………………..1

𝑄𝑗 = σ𝑖=1
𝑁 𝑭𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗

𝑄𝑗 is generalized force whose dimensions are not necessarily equal to the force.

It may be force or torque. Now using the second term of D’ Alembert principle

σ𝑖=1
𝑁 ሶ𝑷𝑖 . 𝜹𝒓𝑖 = σ𝑖,𝑗𝑚𝑖 ሷ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗

14

Lagrange’s Equation



Considering the differential equation

σ𝑖
𝑁 𝑑

𝑑𝑡
𝑚𝑖 ሶ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
= σ𝑖

𝑁𝑚𝑖 ሷ𝒓𝑖 .
𝜕𝒓𝒊

𝜕𝑞𝑗
+σ𝑖

𝑁𝑚𝑖 ሶ𝒓𝑖 .
𝑑

𝑑𝑡

𝜕𝒓𝒊

𝜕𝑞𝑗

σ𝑖
𝑁𝑚𝑖 ሷ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
= σ𝑖

𝑁 𝑑

𝑑𝑡
𝑚𝑖 ሶ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
− σ𝑖

𝑁𝑚𝑖 ሶ𝒓𝑖 .
𝜕 ሶ𝒓𝒊

𝜕𝑞𝑗

σ𝑖
𝑁𝑚𝑖 ሷ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
= σ𝑖

𝑁 𝑑

𝑑𝑡
𝑚𝑖 ሶ𝒓𝑖 .

𝜕 ሶ𝒓𝒊

𝜕 ሶ𝑞𝑗
− σ𝑖

𝑁𝑚𝑖 ሶ𝒓𝑖 .
𝜕 ሶ𝒓𝒊

𝜕𝑞𝑗

σ𝑖
𝑁𝑚𝑖 ሷ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
= σ𝑖

𝑁 𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝑞𝑗

1

2
𝑚𝑖 ሶ𝒓𝑖

2 − σ𝑖
𝑁 𝜕

𝜕𝑞𝑗

1

2
𝑚𝑖 ሶ𝒓𝑖

2

σ𝑖
𝑁𝑚𝑖 ሷ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝑞𝑗
σ𝑖
𝑁 1

2
𝑚𝑖 ሶ𝒓𝑖

2 −
𝜕

𝜕𝑞𝑗
σ𝑖
𝑁 1

2
𝑚𝑖 ሶ𝒓𝑖

2

σ𝑖
𝑁𝑚𝑖 ሷ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗

σ𝑖=1
𝑁 ሶ𝑷𝑖 . 𝜹𝒓𝑖 = σ𝑖,𝑗𝑚𝑖 ሷ𝒓𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
𝛿𝑞𝑗 = σ𝑗=1

𝑛 𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗
𝛿𝑞𝑗………….2 15

Lagrange’s Equation

𝜕 ሶ𝒓𝒊
𝜕 ሶ𝑞𝑗

=
𝜕𝒓𝒊
𝜕𝑞𝑗
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Lagrange’s Equation

Using eq 1 and eq 2 in the D’Alembert principle

σ𝑖 𝑭𝒊
(𝒆) − ሶ𝒑𝒊 ∙ 𝛿𝒓𝑖 = σ𝑗=1

𝑛 𝑄𝑗𝛿𝑞𝑗 −σ𝑗=1
𝑛 𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗
𝛿𝑞𝑗 = 0

σ𝑖 𝑭𝒊
(𝒆) − ሶ𝒑𝒊 ∙ 𝛿𝒓𝑖 = σ𝑗=1

𝑛 𝑄𝑗 −
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
+

𝜕𝑇

𝜕𝑞𝑗
𝛿𝑞𝑗 = 0

𝑄𝑗 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗

Above equation is known as Lagrange’s equation.

Where 𝑄𝑗 is generalized force. Its either

i) Gravitational Force

ii) Spring force

iii) External applied

iv) Electric or magnetic force

v) Torque
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Lagrange’s Mechanics Examples

A Particle of mass “m” moves in a plane. Find its equation in cartesian coordinates.

Solution: Consider the coordinates of particle having mass m is r(x,y) or ҧ𝑟 = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗
in plane. Let the force acting in x and y direction be Fx and Fy respectively.

Kinetic energy = 𝑇 =
1

2
𝑚 ሶ𝑥2 + ሶ𝑦2

Now Lagrange’s Equation 𝑄𝑗 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗
can be written as

For x coordinate 𝑄𝑥 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑥
−

𝜕𝑇

𝜕𝑥
& 𝑄𝑥 = 𝐹𝑥

𝜕 ҧ𝑟

𝜕𝑥
= 𝐹𝑥 Ƹ𝑖

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑥
−

𝜕𝑇

𝜕𝑥
=

𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝑥

1

2
𝑚 ሶ𝑥2 + ሶ𝑦2 −

𝜕

𝜕𝑥

1

2
𝑚 ሶ𝑥2 + ሶ𝑦2

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑥
−

𝜕𝑇

𝜕𝑥
=

𝑑

𝑑𝑡
𝑚 ሶ𝑥 = 𝑚 ሷ𝑥

Therefore, 𝐹𝑥 Ƹ𝑖 = 𝑚 ሷҧ𝑥

𝟎
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Lagrange’s Mechanics Examples

For y coordinate

𝑄𝑦 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑦
−

𝜕𝑇

𝜕𝑦
& 𝑄𝑦 = 𝐹𝑦

𝜕 ҧ𝑟

𝜕𝑦
= 𝐹𝑦 Ƹ𝑗

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑦
−

𝜕𝑇

𝜕𝑦
=

𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝑦

1

2
𝑚 ሶ𝑥2 + ሶ𝑦2 −

𝜕

𝜕𝑦

1

2
𝑚 ሶ𝑥2 + ሶ𝑦2

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑦
−

𝜕𝑇

𝜕𝑦
=

𝑑

𝑑𝑡
𝑚 ሶ𝑦 = 𝑚 ሷ𝑦

Or 𝐹𝑦 Ƹ𝑗 = 𝑚 ሷത𝑦

𝟎
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A Particle of mass “m” moves in a plane. Find its equation in plane polar coordinates.

Solution: Consider the coordinates of particle having mass “m” are (r,θ) in plane. Let

the force acting in “r” and “θ” direction be “Fr” and “Fθ” respectively.

Kinetic energy = 𝑇 =
1

2
𝑚 ሶ𝑟2 + 𝑟2 ሶ𝜃2

Now Lagrange’s Equation 𝑄𝑗 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗
can be written as

For r coordinate 𝑄𝑟 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑟
−

𝜕𝑇

𝜕𝑟
& 𝑄𝑟 = 𝐹𝑟

𝜕 ҧ𝑟

𝜕𝑟
= 𝐹𝑟 Ƹ𝑟

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑟
−

𝜕𝑇

𝜕𝑟
=

𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝑟

1

2
𝑚 ሶ𝑟2 + 𝑟2 ሶ𝜃2 −

𝜕

𝜕𝑟

1

2
𝑚 ሶ𝑟2 + 𝑟2 ሶ𝜃2

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑟
−

𝜕𝑇

𝜕𝑟
=

𝑑

𝑑𝑡
𝑚 ሶ𝑟 − 𝑚𝑟 ሶ𝜃2 = 𝑚 ሷ𝑟 − 𝑟 ሶ𝜃2

Therefore, 𝐹𝑟 Ƹ𝑟 = 𝑚 ሷ𝑟 − 𝑟 ሶ𝜃2 Ƹ𝑟
2

Lagrange’s Mechanics Examples
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Lagrange’s Mechanics Examples

For 𝜃 coordinate

𝑄𝜃 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝜃
−

𝜕𝑇

𝜕𝜃
& 𝑄𝜃 = 𝐹𝜃

𝜕 ҧ𝑟

𝜕𝜃
= 𝐹𝜃𝑟

𝜕 Ƹ𝑟

𝜕𝜃
= 𝐹𝜃𝑟 ෠𝜃

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝜃
−

𝜕𝑇

𝜕𝜃
=

𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝜃

1

2
𝑚 ሶ𝑟2 + 𝑟2 ሶ𝜃2 −

𝜕

𝜕𝜃

1

2
𝑚 ሶ𝑟2 + 𝑟2 ሶ𝜃2

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝜃
−

𝜕𝑇

𝜕𝜃
=

𝑑

𝑑𝑡
𝑚𝑟2 ሶ𝜃 = 𝑚 𝑟2 ሷ𝜃 + 2𝑟 ሶ𝑟 ሶ𝜃

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝜃
−

𝜕𝑇

𝜕𝜃
= 𝑚𝑟 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃

Or 𝐹𝜃𝑟 = 𝑚𝑟 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃

𝐹𝜃 ෠𝜃 = 𝑚 𝑟 ሷ𝜃 + 2 ሶ𝑟 ሶ𝜃 ෠𝜃



For conservative force which can be derivable from a scalar Potential

𝑭𝑖 = −∇𝑖𝑉𝑖

⇒ 𝑄𝑗 = σ𝑖=1
𝑁 𝑭𝑖 .

𝜕𝒓𝒊

𝜕𝑞𝑗
= −σ𝑖=1

𝑁 ∇𝑖𝑉𝑖 .
𝜕𝒓𝒊

𝜕𝑞𝑗

⇒ 𝑄𝑗= −σ𝑖=1
𝑁 𝜕𝑉𝑖

𝜕𝑞𝑗
= −

𝜕

𝜕𝑞𝑗
σ𝑖=1
𝑁 𝑉𝑖 = −

𝜕𝑉

𝜕𝑞𝑗

Therefore, the Lagrange's Equation can be written as

𝑄𝑗 −
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
+

𝜕𝑇

𝜕𝑞𝑗
= −

𝜕𝑉

𝜕𝑞𝑗
−

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
+

𝜕𝑇

𝜕𝑞𝑗
= 0

⇒
𝑑

𝑑𝑡

𝜕 𝑇−𝑉

𝜕 ሶ𝑞𝑗
−

𝜕 𝑇−𝑉

𝜕𝑞𝑗
= 0

⇒
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0

4

Lagrange’s Equation For conservative force

𝜵𝑉 ∙ 𝑑𝒓 =
𝜕

𝜕𝑥
Ƹ𝑖 +

𝜕

𝜕𝑦
Ƹ𝑗 +

𝜕

𝜕𝑧
෠𝑘 𝑉 ∙ 𝑑𝑥 Ƹ𝑖 + 𝑑𝑦 Ƹ𝑗 + 𝑑𝑧෠𝑘

𝜵𝑉 ∙ 𝑑𝒓 =
𝜕𝑉

𝜕𝑥
Ƹ𝑖 +

𝜕𝑉

𝜕𝑦
Ƹ𝑗 +

𝜕𝑉

𝜕𝑧
෠𝑘 ∙ 𝑑𝑥 Ƹ𝑖 + 𝑑𝑦 Ƹ𝑗 + 𝑑𝑧෠𝑘

𝜵𝑉 ∙ 𝑑𝒓 =
𝜕𝑉

𝜕𝑥
𝑑𝑥 +

𝜕𝑉

𝜕𝑦
𝑑𝑦 +

𝜕𝑉

𝜕𝑧
𝑑𝑧 = 𝑑𝑉

For a function V(x,y,z)

𝑑𝑉 =
𝜕𝑉

𝜕𝑥
𝑑𝑥 +

𝜕𝑉

𝜕𝑦
𝑑𝑦 +

𝜕𝑉

𝜕𝑧
𝑑𝑧
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Lagrange’s Equation For conservative force

⇒
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0

Where 𝐿 = 𝑇 − 𝑉 is called Lagrangian of the system.

This equation involves only Kinetic and potential energy which are scalar quantities.

Hence, we have developed our mechanics such that we do not require all information

about the forces, which were necessary in Newtonian mechanics,

When we transform from space coordinates system to generalized coordinates

system, the forces remain invariant.

Whereas the Lagrangian 𝐿 = 𝑇 − 𝑉 is invariant under coordinate transformation.
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Lagrange’s Equation For Velocity dependent potential

For a velocity dependent potential U( ሶ𝑞𝑗 , 𝑞𝑗) the generalize force can be derivable as

𝑄𝑗 = −
𝜕𝑈

𝜕𝑞𝑗
+

𝑑

𝑑𝑡

𝜕𝑈

𝜕 ሶ𝑞𝑗

Therefore, the Lagrange's Equation can be written as

𝑄𝑗 −
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
+

𝜕𝐿

𝜕𝑞𝑗
= 0

⇒
𝑑

𝑑𝑡

𝜕 𝑇−𝑈

𝜕 ሶ𝑞𝑗
−

𝜕 𝑇−𝑈

𝜕𝑞𝑗
= 0

⇒
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0

Where 𝐿 = 𝑇( ሶ𝑞𝑗 , 𝑞𝑗) − 𝑈( ሶ𝑞𝑗 , 𝑞𝑗)

The practical example of this case is motion of charged particle in electromagnetic field.
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How to solve Problems using Lagrange’s Equation

1. Identify the generalize coordinates (independent)

2. Express kinetic energy and Potential Energy into terms

of independent coordinates

3. Find 𝐿 = 𝑇 − 𝑉

4. Use Lagrange’s equation

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0

𝑞𝑗 is independent coordinate



A Particle of mass “m” attached to spring and pulled by a force “F” to a distance x.

Find its equation of motion.

Solution: Kinetic energy = 𝑇 =
1

2
𝑚 ሶ𝑥2,

Potential energy = 𝑉 =
1

2
𝑘𝑥2

⇒ Lagrangian = 𝐿 = 𝑇 − 𝑉 =
1

2
𝑚 ሶ𝑥2 −

1

2
𝑘𝑥2

Now Lagrange’s Equation

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥
−

𝜕𝐿

𝜕𝑥
=

𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝑥

1

2
𝑚 ሶ𝑥2 −

1

2
𝑘𝑥2 −

𝜕

𝜕𝑥

1

2
𝑚 ሶ𝑥2 −

1

2
𝑘𝑥2 = 0

⇒
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥
−

𝜕𝐿

𝜕𝑥
=

𝑑

𝑑𝑡
𝑚 ሶ𝑥 + 𝑘𝑥 = 𝑚 ሷ𝑥 + 𝑘𝑥 = 0

⇒ 𝑚 ሷ𝑥 = −𝑘𝑥 or 𝑚 ሷԦ𝑥 = −𝑘 Ԧ𝑥 8

Lagrange’s Mechanics Examples

𝟎 𝟎
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Simple Pendulum

For y coordinate

𝑦 = 𝑙 𝑐𝑜𝑠 𝜃

𝑥 = 𝑙 sin 𝜃

𝑇 =
1

2
𝑚𝑙2 ሶ𝜃2

𝑉 = −𝑚𝑔𝑦 = −𝑚𝑔𝑙 cos 𝜃

Lagrangian 𝐿 = 𝑇 − 𝑉 =
1

2
𝑚𝑙2 ሶ𝜃2 +𝑚𝑔𝑙 cos 𝜃

Independent coordinates is only 𝜃

Therefore, Lagrange’s equation can be written as

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0

𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝜃

1

2
𝑚𝑙2 ሶ𝜃2 +𝑚𝑔𝑙 cos 𝜃 −

𝜕

𝜕𝜃

1

2
𝑚𝑙2 ሶ𝜃2 +𝑚𝑔𝑙 cos 𝜃 = 0

𝑙 sin 𝜃

𝑦
=
𝑙
𝑐𝑜
𝑠
𝜃
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Simple Pendulum

𝑑

𝑑𝑡
𝑚𝑙2 ሶ𝜃 − −𝑚𝑔𝑙 𝑠𝑖𝑛 𝜃 = 0

𝑚𝑙2 ሷ𝜃 + 𝑚𝑔𝑙 𝑠𝑖𝑛 𝜃 = 0

𝑚𝑙2 ሷ𝜃 + 𝑚𝑔𝑙 𝑠𝑖𝑛 𝜃 = 0

ሷ𝜃 +
𝑔

𝑙
𝑠𝑖𝑛 𝜃 = 0

𝜃 is very small 𝑠𝑖𝑛 𝜃 ≈ 𝜃

ሷ𝜃 +
𝑔

𝑙
𝜃 = 0

ሷ𝜃 = −
𝑔

𝑙
𝜃

ሷ𝜃 ∝ −𝜃

The motion of simple pendulum will be simple hormonic motion.

𝑥 = 𝑙 sin 𝜃

𝑦
=
𝑙
co
s
𝜃 𝑙
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Compound Pendulum

A rigid body capable to oscillate in a plane about a fix point is called compound pendulum.

Let us consider a body of mass m suspended at pivot point “P”. If “l” is the distance

between suspension point and center of mass G. Where radius of gyrating is “k” (root mean

square distance of particles or 𝑘2 = ൗ𝑟1
2+𝑟2

2+𝑟3
2+⋯+𝑟𝑛

2

𝑛) and I = mk2

𝑇 =
1

2
𝐼 ሶ𝜃2

𝑉 = −𝑚𝑔𝑙 cos 𝜃

Lagrangian 𝐿 = 𝑇 − 𝑉 =
1

2
𝐼 ሶ𝜃2 +𝑚𝑔𝑙 cos 𝜃

Therefore, Lagrange’s equation can be written as
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0

I ሷ𝜃 + 𝑚𝑔𝑙 sin 𝜃 = 0

⇒ ሷ𝜃 +
𝑚𝑔𝑙

I
sin 𝜃 = 0 or ⇒ ሷ𝜃 +

𝑔𝑙

𝑘2
sin 𝜃 = 0
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Projectile Motion

𝑇 =
1

2
𝑚( ሶ𝑟2 + 𝑟2 ሶ𝜃2)

𝑉 = 𝑚𝑔𝑦 = 𝑚𝑔𝑟 sin 𝜃

𝐿 = 𝑇 − 𝑉 =
1

2
𝑚( ሶ𝑟2 + 𝑟2 ሶ𝜃2) − 𝑚𝑔𝑟 sin 𝜃

In projectile motion we have tow generalized coordinates 𝑟 and 𝜃

Therefore, we must solve two Lagrange’s equation for 𝑟 and 𝜃

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑟
−

𝜕𝐿

𝜕𝑟
= 0

⇒ 𝑚 ሷ𝑟 − 𝑟 ሶ𝜃2 +𝑚𝑔 sin 𝜃 = 0

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0

⇒ 𝑚 𝑟 ሷ𝜃 − 2 ሶ𝑟 ሶ𝜃 + 𝑚𝑔 cos 𝜃 = 0
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Lagrange’s Equation for planetary motion

Lagrange’s Equation of planetary motion under central potential 𝐕 = −𝒎𝝁/𝒓

𝑇 =
1

2
𝑚( ሶ𝑟2 + 𝑟2 ሶ𝜃2)

𝑉 = −
mμ

r

𝐿 = 𝑇 − 𝑉 =
1

2
𝑚( ሶ𝑟2 + 𝑟2 ሶ𝜃2) +

𝑚𝜇

𝑟

Generalized coordinates are “𝑟” and “𝜃”, Therefore we must solve two Lagrange’s equation

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑟
−

𝜕𝐿

𝜕𝑟
= 0

⇒ 𝑚 ሷ𝑟 − 𝑟 ሶ𝜃2 +
𝑚𝜇

𝑟2
= 0

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0

⇒
𝑑

𝑑𝑡
𝑚𝑟2 ሶ𝜃 = 0 ⇒ 𝑚𝑟2 ሶ𝜃 = 𝐿 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡



14

Theorem

Prove that in a simple dynamical conservative system 𝑇 + 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Proof: for a conservative system

We must prove
𝑑

𝑑𝑡
𝑇 + 𝑉 = 0

We know that for conservative system 𝑉 = 𝑉 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛

𝑇 = 𝑇 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛, ሶ𝑞1, ሶ𝑞2, ሶ𝑞3…… ሶ𝑞𝑛

Therefore 𝐿 = 𝑇 − 𝑉 = 𝐿 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛, ሶ𝑞1, ሶ𝑞2, ሶ𝑞3…… ሶ𝑞𝑛

Now 𝜕𝐿

𝜕 ሶ𝑞𝑗
=

𝜕𝑇

𝜕 ሶ𝑞𝑗
=

𝜕

𝜕 ሶ𝑞𝑗
σ𝑖
𝑁 1

2
𝑚𝑖 ሶ𝑟𝑖

2

𝜕𝐿

𝜕 ሶ𝑞𝑗
= σ𝑖

𝑁𝑚𝑖 ሶ𝑟𝑖
𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑞𝑗

ሶ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
= σ𝑖

𝑁𝑚𝑖 ሶ𝑟𝑖
𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑞𝑗
ሶ𝑞𝑗
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Theorem

And σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
= σ𝑖,𝑗𝑚𝑖 ሶ𝑟𝑖

𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑞𝑗
ሶ𝑞𝑗

σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
= σ𝑖

𝑁𝑚𝑖 ሶ𝑟𝑖 σ𝑗
𝑛 𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑞𝑗
ሶ𝑞𝑗

σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
= σ𝑖

𝑁𝑚𝑖 ሶ𝑟𝑖 σ𝑗
𝑛 𝜕𝑟𝑖

𝜕𝑞𝑗
ሶ𝑞𝑗 because

𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑞𝑗
=

𝜕𝑟𝑖

𝜕𝑞𝑗
& ሶ𝑟𝑖 = σ𝑗

𝑛 𝜕𝑟𝑖

𝜕𝑞𝑗
ሶ𝑞𝑗

σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
= σ𝑖

𝑁𝑚𝑖 ሶ𝑟𝑖
2 = 2σ𝑖

𝑁 1

2
𝑚𝑖 ሶ𝑟𝑖

2

σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
= 2𝑇

And σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿 = 2𝑇 − 𝐿

σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿 = 2𝑇 − 𝑇 + 𝑉 = 𝑇 + 𝑉
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Theorem

And
𝑑

𝑑𝑡
[σ𝑗

𝑛 ሶ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿] = σ𝑗

𝑛 ሷ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
+ σ𝑗

𝑛 ሶ𝑞𝑗
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝑑

𝑑𝑡
𝐿

𝑑

𝑑𝑡
[σ𝑗

𝑛 ሶ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿] = σ𝑗

𝑛 ሷ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
+ σ𝑗

𝑛 ሶ𝑞𝑗
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
− σ𝑗

𝑛[
𝜕𝐿

𝜕𝑞𝑗
ሶ𝑞𝑗 +

𝜕𝐿

𝜕 ሶ𝑞𝑗
ሷ𝑞𝑗]

𝑑

𝑑𝑡
[σ𝑗

𝑛 ሶ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿] = σ𝑗

𝑛 ሷ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
+ σ𝑗

𝑛 ሶ𝑞𝑗
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
− σ𝑗

𝑛 𝜕𝐿

𝜕𝑞𝑗
ሶ𝑞𝑗 − σ𝑗

𝑛 𝜕𝐿

𝜕 ሶ𝑞𝑗
ሷ𝑞𝑗

𝑑

𝑑𝑡
[σ𝑗

𝑛 ሶ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿] = σ𝑗

𝑛 ሶ𝑞𝑗
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
− σ𝑗

𝑛 𝜕𝐿

𝜕𝑞𝑗
ሶ𝑞𝑗

𝑑

𝑑𝑡
[σ𝑗

𝑛 ሶ𝑞𝑗
𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿] = σ𝑗

𝑛 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
ሶ𝑞𝑗 = 0

[σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

σ𝑗
𝑛 ሶ𝑞𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑗
− 𝐿 = 2𝑇 − 𝐿 = 𝑇 + 𝑉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡



Solution: in the case of spherical pendulum the bob moves on a s smooth sphere of radius “r”. The

position of the bob is located by spherical coordinates 𝑟, 𝜃, 𝜑 . The distance r of the bob from the

center of the sphere on which the bod moves is radius (constant) of the sphere

𝑇 =
1

2
𝑚𝑟2( ሶ𝜃2 + sin2 𝜃 ሶ𝜑2) & 𝑉 = −𝑚𝑔𝑟 cos 𝜃

𝐿 = 𝑇 − 𝑉 =
1

2
𝑚𝑟2 ሶ𝜃2 + sin2 𝜃 ሶ𝜑2 +𝑚𝑔𝑟 cos 𝜃

Generalized coordinates are 𝜃 and 𝜑, Therefore we must solve two Lagrange’s equation

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0

⇒ 𝑚𝑟2 ሷ𝜃 − sin 𝜃 cos 𝜃 ሶ𝜑2 +
𝑔

𝑟
sin 𝜃 = 0

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜑
−

𝜕𝐿

𝜕𝜑
= 0

⇒
𝑑

𝑑𝑡
𝑚𝑟2 𝑠𝑖𝑛2 𝜃 ሶ𝜑 = 0 ⇒ ሷ𝜑 = −2 cot 𝜃 ሶ𝜃 ሶ𝜑

17
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Atwood machine is a simple machine where two masses can move over a

frictional less pully.

Equation of motion for 𝑚1

𝑇 −𝑚1𝑔 = −𝑚1𝑎…………………..1

Equation of motion for 𝑚2

𝑇 −𝑚2𝑔 = 𝑚2𝑎…………………2

Subtraction Equation 1 from equation 2

𝑇 −𝑚2𝑔 = 𝑚2𝑎

𝑇 −𝑚1𝑔 = −𝑚1𝑎

−𝑚2𝑔 +𝑚1𝑔 = 𝑚2𝑎 + 𝑚1𝑎

⇒ a = ሷ𝑦 = 𝑔
𝑚1−𝑚2

𝑚1+𝑚2
18
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Atwood machine is a simple machine where two masses can move over a

frictional less pully.

𝑇 =
1

2
𝑚1 ሶ𝑦2 +

1

2
𝑚2 ሶ𝑦2 =

1

2
ሶ𝑦2 𝑚1 +𝑚2 &

𝑉 = −𝑚1𝑔𝑦 −𝑚2𝑔 𝑙 − 𝑦 = −𝑔𝑦 𝑚1 −𝑚2 −𝑚2gl

𝐿 = 𝑇 − 𝑉 =
1

2
ሶ𝑦2 𝑚1 +𝑚2 + 𝑔𝑦 𝑚1 −𝑚2 +𝑚2gl

Generalized coordinate is q = y

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑦
−

𝜕𝐿

𝜕𝑦
= 0

⇒
𝑑

𝑑𝑡
ሶ𝑦 𝑚1 +𝑚2 − 𝑔 𝑚1 −𝑚2 = 0

⇒ ሷ𝑦 𝑚1 +𝑚2 − 𝑔 𝑚1 −𝑚2 = 0

⇒ ሷ𝑦 = 𝑔
𝑚1−𝑚2

𝑚1+𝑚2 19

Atwood Machine

𝑦 𝑙 − 𝑦

Note: If we consider the motion of pully

which is rotating about a fixed axis. The

Kinetic energy must include a term

1

2
𝐼 ሶ𝜃2 =

1

2
𝐼

ሶ𝑦2

𝑅2

And ሷ𝑦 = 𝑔
𝑚1−𝑚2

𝑚1+𝑚2+
𝐼

𝑅2



𝑇 =
1

2
𝑚1 ሶ𝑥1

2 +
1
2
𝑚2 ሶ𝑥2

2

𝑉 =
1

2
𝑘1𝑥1

2 +
1

2
𝑘3𝑥2

2 +
1

2
𝑘2 𝑥1 − 𝑥2

2

𝐿 =
1

2
𝑚1 ሶ𝑥1

2 +
1

2
𝑚2 ሶ𝑥2

2 −
1

2
𝑘1𝑥1

2 +
1

2
𝑘3𝑥2

2 +
1

2
𝑘2 𝑥1 − 𝑥2

2

In this problem we have two degrees of freedom for 𝑥1and 𝑥2
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥1
−

𝜕𝐿

𝜕𝑥1
=

𝑑

𝑑𝑡
𝑚1 ሶ𝑥1 − −𝑘1𝑥1 − 𝑘2 𝑥1 − 𝑥2

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥1
−

𝜕𝐿

𝜕𝑥1
= 𝑚1 ሷ𝑥1 + 𝑥1 𝑘1 + 𝑘2 − 𝑘2𝑥2

And

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥2
−

𝜕𝐿

𝜕𝑥2
= 𝑚2 ሷ𝑥2 + 𝑥2 𝑘3 + 𝑘2 − 𝑘2𝑥1

20
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If L is a Lagrangian for a system of n degree of freedom satisfying Lagrange’s equation.

Show by direct substitution that

𝐿′ = 𝐿 +
𝑑

𝑑𝑡
𝐹 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛, 𝑡

also satisfies Lagrange’s equating where F is any arbitrary but differentiable function of its

arguments.

Solution:
𝜕𝐿′

𝜕𝑞𝑗
=

𝜕𝐿

𝜕𝑞𝑗
+

𝜕

𝜕𝑞𝑗

𝑑

𝑑𝑡
𝐹

And
𝜕𝐿′

𝜕 ሶ𝑞𝑗
=

𝜕𝐿

𝜕 ሶ𝑞𝑗
+

𝜕

𝜕 ሶ𝑞𝑗

𝑑

𝑑𝑡
𝐹

Since 𝐹 𝑞1, 𝑞2, 𝑞3, ……𝑞𝑛, 𝑡

𝑑𝐹

𝑑𝑡
= σ

𝜕𝐹

𝜕𝑞𝑗
ሶ𝑞𝑗 +

𝜕𝐹

𝜕𝑡

𝜕

𝜕 ሶ𝑞𝑗

𝑑𝐹

𝑑𝑡
=

𝜕𝐹

𝜕𝑞𝑗
21
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Therefore,
𝑑

𝑑𝑡

𝜕𝐿′

𝜕 ሶ𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
+

𝑑

𝑑𝑡

𝜕

𝜕 ሶ𝑞𝑗

𝑑𝐹

𝑑𝑡
=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
+

𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑞𝑗

And
𝜕𝐿′

𝜕𝑞𝑗
=

𝜕𝐿

𝜕𝑞𝑗
+

𝜕

𝜕𝑞𝑗

𝑑𝐹

𝑑𝑡

Therefore,
𝑑

𝑑𝑡

𝜕𝐿′

𝜕 ሶ𝑞𝑗
−

𝜕𝐿′

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
+

𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
−

𝜕

𝜕𝑞𝑗

𝑑𝐹

𝑑𝑡

𝑑

𝑑𝑡

𝜕𝐿′

𝜕 ሶ𝑞𝑗
−

𝜕𝐿′

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
+

𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑞𝑗
−

𝑑

𝑑𝑡

𝜕𝐹

𝜕𝑞𝑗

𝑑

𝑑𝑡

𝜕𝐿′

𝜕 ሶ𝑞𝑗
−

𝜕𝐿′

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0

22
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A particle of mass m moves in one dimension such that it has Lagrangian 𝐿 =
𝑚2 ሶ𝑥4

12
+𝑚 ሶ𝑥2𝑉𝑥 − 𝑉𝑥

2

Where V is some differentiable function of x Find the equation of motion for x(t). Describe the

physical nature of the system on the basis of this equation

𝜕𝐿

𝜕 ሶ𝑥
=

𝑚2 ሶ𝑥3

3
+ 2𝑚 ሶ𝑥𝑉𝑥

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥
= 𝑚2 ሶ𝑥2 ሷ𝑥 + 2𝑚 ሷ𝑥𝑉𝑥+ 2𝑚 ሶ𝑥

𝑑

𝑑𝑡
𝑉𝑥 = 𝑚2 ሶ𝑥2 ሷ𝑥 + 2𝑚 ሷ𝑥𝑉𝑥+ 2𝑚 ሶ𝑥2

𝜕𝑉𝑥

𝜕𝑥

𝜕𝐿

𝜕𝑥
= 𝑚 ሶ𝑥2

𝜕𝑉𝑥

𝜕𝑥
− 2𝑉𝑥

𝜕𝑉𝑥

𝜕𝑥

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥
−

𝜕𝐿

𝜕𝑥
= 𝑚2 ሶ𝑥2 ሷ𝑥 + 2𝑚 ሷ𝑥𝑉𝑥+ 2𝑚 ሶ𝑥2

𝜕𝑉𝑥

𝜕𝑥
−𝑚 ሶ𝑥2

𝜕𝑉𝑥

𝜕𝑥
+ 2𝑉𝑥

𝜕𝑉𝑥

𝜕𝑥

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥
−

𝜕𝐿

𝜕𝑥
= 𝑚2 ሶ𝑥2 ሷ𝑥 + 2𝑚 ሷ𝑥𝑉𝑥 +𝑚 ሶ𝑥2

𝜕𝑉𝑥

𝜕𝑥
+ 2𝑉𝑥

𝜕𝑉𝑥

𝜕𝑥

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑥
−

𝜕𝐿

𝜕𝑥
= 𝑚 ሶ𝑥2 𝑚 ሷ𝑥 +

𝜕𝑉𝑥

𝜕𝑥
+ 2𝑉𝑥 𝑚 ሷ𝑥 +

𝜕𝑉𝑥

𝜕𝑥
= 𝑚 ሷ𝑥 +

𝜕𝑉𝑥

𝜕𝑥
𝑚 ሶ𝑥2 + 2𝑉𝑥 = 0

𝑚 ሷ𝑥 = −
𝜕𝑉𝑥

𝜕𝑥
&

1

2
𝑚 ሶ𝑥2 + 𝑉𝑥 = 0 23
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Notice that
𝑑

𝑑𝑡

1

2
𝑚 ሶ𝑥2 + 𝑉𝑥 = 𝑚 ሶ𝑥 ሷ𝑥 +

𝜕𝑉

𝜕𝑥
ሶ𝑥 = ሶ𝑥 𝑚 ሷ𝑥 +

𝜕𝑉𝑥

𝜕𝑥

So, if we denote

𝐸 =
1

2
𝑚 ሶ𝑥2 + 𝑉𝑥

Equation become ሶ𝑥 𝑚 ሷ𝑥 +
𝜕𝑉𝑥

𝜕𝑥
𝑚 ሶ𝑥2 + 2𝑉𝑥 = ሶ𝐸(2𝐸) = 0

Or ሶ𝐸𝐸 = 0

If we forget about the trivial case where the particles is not moving ሶ𝑥 ≠ 0

This becomes

ሶ𝐸𝐸 = 0

Notice that
𝑑

𝑑𝑡
𝐸2 = 2𝐸 ሶ𝐸 = 0

So, this is the motion where the quantity 𝐸2 is conserved.
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In another nontrivial case where 𝐸 ≠ 0 then we can get ሶ𝐸 = 0

Since we have shown that

ሶE = ሶx m ሷx +
𝜕𝑉𝑥
𝜕𝑥

The Equation of motion in this case is

𝑚 ሷ𝑥 +
𝜕𝑉𝑥
𝜕𝑥

= 0

This is motion in conservative field force described by potential 𝑉𝑥

In the case 𝐸 ≠ 0 we have

Which mean that E is some given constant, In the case of E=0 again E is a constant just in this

particular case that constant is equation to zero.

Thus, we can use that in both cases the equation if motion is given by

1

2
𝑚 ሶ𝑥2 + 𝑉𝑥 = 𝐸

25
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Where E=constant expressing ሶ𝑥 we get

ሶ𝑥 = ±
2(𝐸 − 𝑉𝑥)

𝑚

Integrating this equation, we can obtain x(t)

This is the motion of the particle in one dimension in the conservative potential V. X(t) is obtained

from

1

2
𝑚 ሶ𝑥2 + 𝑉𝑥 = 𝐸

Knowing what 𝑉𝑥 is.
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Charge Particle in Electromagnetic field

Solution: First we will find the potential using maxwells equations.

ഥ∇ × ത𝐸 +
𝜕 ത𝐵

𝜕𝑡
= 0 Maxwell –Faraday Law of electromagnetic induction.

⇒ ഥ∇ × ത𝐸 +
𝜕

𝜕𝑡
ഥ∇ × ҧ𝐴 = 0

⇒ ഥ∇ × ത𝐸 +
𝜕 ҧ𝐴

𝜕𝑡
= 0

And ഥ∇ × ഥ∇𝜑 = 0 For any scalar potential

⇒ ത𝐸 +
𝜕 ҧ𝐴

𝜕𝑡
= −ഥ∇𝜑

⇒ ത𝐸 = −ഥ∇𝜑 −
𝜕 ҧ𝐴

𝜕𝑡

𝜑 → 𝑠𝑐𝑎𝑙𝑎𝑟 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 & ҧ𝐴 → 𝑣𝑒𝑐𝑡𝑜𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 2

Velocity dependent Potential



ത𝐹 = 𝑞 ത𝐸 + ҧ𝑣 × ത𝐵 = 𝑞[−ഥ∇𝜑 −
𝜕 ҧ𝐴

𝜕𝑡
+ ҧ𝑣 × (ഥ∇ × ҧ𝐴)]

For 1-dimensional

ത𝐹𝑥 = 𝑞[−
𝜕𝜑

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑡
+ ҧ𝑣 × ( ത𝛻 × ҧ𝐴) 𝑥]

To find the third Term

ҧ𝑣 ×

Ƹ𝑖 Ƹ𝑗 ෠𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐴𝑥 𝐴𝑦 𝐴𝑧
𝑥

= ҧ𝑣 × [ Ƹ𝑖
𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧
+ Ƹ𝑗

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
+ ෠𝑘(

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
)

𝑥

Ƹ𝑖 Ƹ𝑗 ෠𝑘
𝑣𝑥 𝑣𝑦 𝑣𝑧

𝜕𝐴𝑧

𝜕𝑦
−

𝜕𝐴𝑦

𝜕𝑧

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥

𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦 𝑥

= 𝑣𝑦
𝜕𝐴𝑦

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑦
− 𝑣𝑧(

𝜕𝐴𝑥

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑥
)

3

Velocity dependent Potential

Solving for x direction only



⇒ ҧ𝑣 × ( ത𝛻 × ҧ𝐴) 𝑥 = 𝑣𝑦
𝜕𝐴𝑦

𝜕𝑥
− 𝑣𝑦

𝜕𝐴𝑥

𝜕𝑦
+ 𝑣𝑧

𝜕𝐴𝑧

𝜕𝑥
− 𝑣𝑧

𝜕𝐴𝑥

𝜕𝑧

⇒ ҧ𝑣 × ( ത𝛻 × ҧ𝐴) 𝑥 = 𝑣𝑥
𝜕𝐴𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝐴𝑦

𝜕𝑥
+ 𝑣𝑧

𝜕𝐴𝑧

𝜕𝑥
− 𝑣𝑥

𝜕𝐴𝑥

𝜕𝑥
− 𝑣𝑦

𝜕𝐴𝑥

𝜕𝑦
− 𝑣𝑧

𝜕𝐴𝑥

𝜕𝑧

⇒ ҧ𝑣 × ( ത𝛻 × ҧ𝐴) 𝑥 =
𝜕

𝜕𝑥
ҧ𝑣 ∙ ҧ𝐴 − [

𝜕𝐴𝑥

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑧

𝑑𝑧

𝑑𝑡
]

⇒ ҧ𝑣 × ( ത𝛻 × ҧ𝐴) 𝑥 =
𝜕

𝜕𝑥
ҧ𝑣 ∙ ҧ𝐴 −

𝑑𝐴𝑥

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑡

⇒ ത𝐹𝑥 = 𝑞[−
𝜕𝜑

𝜕𝑥
−

𝜕𝐴𝑥

𝜕𝑡
+

𝜕

𝜕𝑥
ҧ𝑣 ∙ ҧ𝐴 −

𝑑𝐴𝑥

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑡
]

⇒ ത𝐹𝑥 = 𝑞[−
𝜕𝜑

𝜕𝑥
+

𝜕

𝜕𝑥
ҧ𝑣 ∙ ҧ𝐴 −

𝑑𝐴𝑥

𝑑𝑡
]

⇒ ത𝐹𝑥 = 𝑞[−
𝜕

𝜕𝑥
𝜑 − ҧ𝑣 ∙ ҧ𝐴 −

𝑑𝐴𝑥

𝑑𝑡
]

ത𝐹 = 𝑞[−ത𝛻 𝜑 − ҧ𝑣 ∙ ҧ𝐴 −
𝑑

𝑑𝑡

𝜕

𝜕𝑣
( ҧ𝑣 ∙ ҧ𝐴)] 4
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𝑑𝐴𝑥

𝑑𝑡
=

𝜕𝐴𝑥

𝜕𝑡
+

𝜕𝐴𝑥

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐴𝑧

𝜕𝑥

𝑑𝑧

𝑑𝑡

⇒ −
𝜕𝐴𝑥

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝐴𝑧

𝜕𝑥

𝑑𝑧

𝑑𝑡
= −

𝑑𝐴𝑥

𝑑𝑡
+

𝜕𝐴𝑥

𝜕𝑡

And

ҧ𝑣 × ( ത𝛻 × ҧ𝐴) 𝑦 =
𝜕

𝜕𝑦
ҧ𝑣 ∙ ҧ𝐴 −

𝑑𝐴𝑦

𝑑𝑡
+

𝜕𝐴𝑦

𝜕𝑡

ҧ𝑣 × ( ത𝛻 × ҧ𝐴) 𝑧 =
𝜕

𝜕𝑧
ҧ𝑣 ∙ ҧ𝐴 −

𝑑𝐴𝑧

𝑑𝑡
+

𝜕𝐴𝑧

𝜕𝑡



⇒ ത𝐹 = 𝑞 −ത𝛻 𝜑 − ҧ𝐴 ∙ ҧ𝑣 +
𝑑

𝑑𝑡

𝜕

𝜕𝑣
𝜑 − ҧ𝐴 ∙ ҧ𝑣

⇒ ത𝐹 = −ത𝛻𝑈+
𝑑

𝑑𝑡

𝜕

𝜕𝑣
𝑈

Therefore,

U = 𝑞𝜑 − 𝑞( ҧ𝐴 ∙ ҧ𝑣)

5
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𝜕𝜑

𝜕𝑣
= 0

And
𝜕

𝜕𝑣
ҧ𝐴 ∙ ҧ𝑣 = ҧ𝐴 ∙

𝜕

𝜕𝑣
ҧ𝑣 = ҧ𝐴



Kinetic energy 𝑇 =
1

2
𝑚 ሶ𝑟2

Potential Energy U = 𝑞𝜑 − 𝑞 ҧ𝐴 ∙ ҧ𝑣 = 𝑞𝜑 − 𝑞 ҧ𝐴 ∙ ሶ ҧ𝑟

Lagrangian

𝐿 = 𝑇 − 𝑈 =
1

2
𝑚 ሶ𝑟2 − 𝑞𝜑 + 𝑞 ҧ𝐴 ∙ ሶ ҧ𝑟

Using Lagrange’s equation
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑟
−

𝜕𝐿

𝜕𝑟
= 0

𝜕𝐿

𝜕 ሶ𝑟
= 𝑚 ሶ𝑟 + 𝑞 ҧ𝐴

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑟
= 𝑚 ሷ𝑟 + 𝑞

𝑑 ҧ𝐴

𝑑𝑡

Now
𝜕𝐿

𝜕𝑟
= −𝑞

𝜕𝜑

𝜕𝑟
+ 𝑞

𝜕

𝜕𝑟
ҧ𝐴 ∙ ሶ ҧ𝑟 = −𝑞 ത𝛻𝜑 + 𝑞 ത𝛻 ҧ𝐴 ∙ ሶ ҧ𝑟

6
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𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑟
−

𝜕𝐿

𝜕𝑟
= 𝑚 ሷ𝑟 + 𝑞

𝑑 ҧ𝐴

𝑑𝑡
+ 𝑞 ത𝛻𝜑 − 𝑞 ത𝛻 ҧ𝐴 ∙ ሶ ҧ𝑟 = 0

⇒ 𝑚 ሷ𝑟 + 𝑞[
𝜕𝐴

𝜕𝑡
+ ሶ( ҧ𝑟 ∙ ത𝛻) ҧ𝐴] + 𝑞 ത𝛻𝜑 − 𝑞 ത𝛻 ҧ𝐴 ∙ ሶ ҧ𝑟 = 0

⇒ 𝑚 ሷ𝑟 − 𝑞 −ത𝛻𝜑 −
𝜕𝐴

𝜕𝑡
− 𝑞[ ത𝛻 ሶҧ𝑟 ∙ ҧ𝐴 − ሶ( ҧ𝑟 ∙ ത𝛻) ҧ𝐴] = 0

⇒ 𝑚 ሷ𝑟 − 𝑞 ത𝐸 − 𝑞[ ሶҧ𝑟 × ( ത𝛻 × ҧ𝐴)] = 0

⇒ 𝑚 ሷ𝑟 − 𝑞 ത𝐸 − 𝑞[ ҧ𝑣 × ത𝐵] = 0

⇒ 𝑚 ሷ𝑟 = 𝑞 ത𝐸 + 𝑞[ ҧ𝑣 × ത𝐵]

7
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𝑑 ҧ𝐴

𝑑𝑡
=

𝜕𝐴

𝜕𝑡
+

𝜕𝐴

𝜕𝑟

𝑑𝑟

𝑑𝑡
𝑑 ҧ𝐴

𝑑𝑡
=

𝜕𝐴

𝜕𝑡
+

𝑑𝑟

𝑑𝑡

𝜕𝐴

𝜕𝑟
𝑑 ҧ𝐴

𝑑𝑡
==

𝜕𝐴

𝜕𝑡
+ ሶ𝑟

𝜕𝐴

𝜕𝑟
𝑑 ҧ𝐴

𝑑𝑡
=

𝜕𝐴

𝜕𝑡
+ ሶ𝑟 . ഥ∇ ҧ𝐴

𝑑 ҧ𝐴

𝑑𝑡
=

𝜕𝐴

𝜕𝑡
+ ሶ𝑟 . ഥ∇ ҧ𝐴



Consider a double pendulum with masses 𝑚1 and 𝑚2 attached by rigid mass less

wires of length 𝑙1 and 𝑙2 the angle they made with vertical axis are 𝜃 and 𝜑 as

illustrated in figure. Position of Bobs

𝑥1 = 𝑙1 sin 𝜃 & 𝑦1 = 𝑙1 cos 𝜃

𝑥2 = 𝑙1 sin 𝜃 + 𝑙2 sin𝜑 & 𝑦2 = 𝑙1 cos 𝜃 + 𝑙2 cos 𝜑

ሶ𝑥1 = 𝑙1 ሶ𝜃 𝑐𝑜𝑠 𝜃 & ሶ𝑦1 = −𝑙1 ሶ𝜃 sin 𝜃

ሶ𝑥2 = 𝑙1 ሶ𝜃 𝑐𝑜𝑠 𝜃 + 𝑙2 ሶ𝜑 𝑐𝑜𝑠 𝜑 & ሶ𝑦2 = − 𝑙1 ሶ𝜃 𝑠𝑖𝑛 𝜃 + 𝑙2 ሶ𝜑 𝑠𝑖𝑛 𝜑

Kinetic energy

𝑇 =
1

2
𝑚1𝑙1

2 ሶ𝜃2 +
1

2
𝑚2𝑙1

2 ሶ𝜃2 +
1

2
𝑚2𝑙2

2 ሶ𝜑2 +𝑚2𝑙1𝑙2 ሶ𝜃 ሶ𝜑 cos 𝜃 − 𝜑

Potential Energy=

𝑉 = −𝑚1g𝑦1 −𝑚2g𝑦2 = −𝑚1𝑔𝑙1 cos 𝜃 − 𝑚2 𝑙1 cos 𝜃 + 𝑙2 cos 𝜑 8

Double Pendulum



𝐿 =
1

2
𝑚1𝑙1

2 ሶ𝜃2 +
1

2
𝑚2𝑙1

2 ሶ𝜃2 +
1

2
𝑚2𝑙2

2 ሶ𝜑2 +𝑚2𝑙1𝑙2 ሶ𝜃 ሶ𝜑 cos 𝜃 − 𝜑 +𝑚1𝑔𝑙1 cos 𝜃 +

𝑚2𝑔 𝑙1 cos 𝜃 + 𝑙2 cos 𝜑

In this system we have tow degrees of freedom (θ, φ) Therefore to solve this system 

we need to solve two sperate Lagrange’s equations. 

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0 &

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜑
−

𝜕𝐿

𝜕𝜑
= 0

𝜕𝐿

𝜕 ሶ𝜃
= 𝑚1𝑙1

2 ሶ𝜃 + 𝑚2𝑙1
2 ሶ𝜃 + 𝑚2𝑙1𝑙2 ሶ𝜑 cos 𝜃 − 𝜑

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
= 𝑚1 +𝑚2 𝑙1

2 ሷ𝜃 + 𝑚2𝑙1𝑙2 ሷ𝜑 cos 𝜃 − 𝜑 −𝑚2𝑙1𝑙2 ሶ𝜑 ሶ𝜃 − ሶ𝜑 sin 𝜃 − 𝜑

𝜕𝐿

𝜕𝜃
= −𝑚2𝑙1𝑙2 ሶ𝜃 ሶ𝜑 sin 𝜃 − 𝜑 − 𝑚1 +𝑚2 𝑔𝑙1 sin 𝜃

9
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𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜃
−

𝜕𝐿

𝜕𝜃
= 0

⇒ 𝑚1 +𝑚2 𝑙1 ሷ𝜃 + 𝑚2𝑙2 ሷ𝜑 cos 𝜃 − 𝜑 −𝑚2𝑙2 ሶ𝜑2 sin 𝜃 − 𝜑 + 𝑚1 +𝑚2 𝑔 sin 𝜃 − 𝜑 = 0

10
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For φ = ሶ𝜑 = ሷ𝜑 = 0

⇒ 𝑚1 +𝑚2 𝑙1 ሷ𝜃 + 𝑚1 +𝑚2 𝑔 sin 𝜃 = 0

⇒ 𝑙1 ሷ𝜃 + 𝑔 sin 𝜃 = 0



For 
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜑
−

𝜕𝐿

𝜕𝜑
= 0

𝜕𝐿

𝜕 ሶ𝜑
= 𝑚2𝑙2

2 ሶ𝜑 + 𝑚2𝑙1𝑙2 ሶ𝜃 cos 𝜃 − 𝜑

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜑
= 𝑚2𝑙2

2 ሷ𝜑 + 𝑚2𝑙1𝑙2 ሷ𝜃 cos 𝜃 − 𝜑 −𝑚2𝑙1𝑙2 ሶ𝜃 ሶ𝜃 − ሶ𝜑 sin 𝜃 − 𝜑

𝜕𝐿

𝜕𝜃
= 𝑚2𝑙1𝑙2 ሶ𝜃 ሶ𝜑 sin 𝜃 − 𝜑 −𝑚2𝑔𝑙2 sin 𝜃

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝜑
−

𝜕𝐿

𝜕𝜑
= 0

⇒ 𝑚2𝑙2 ሷ𝜑 + 𝑚2𝑙1 ሷ𝜃 cos 𝜃 − 𝜑 −𝑚2𝑙1 ሶ𝜃2 sin 𝜃 − 𝜑 +𝑚2𝑔 sin𝜑 = 0

Which is equation of motion for 𝑚2

For = θ = ሶ𝜃 = ሷ𝜃 = 0

⇒ 𝑚2𝑙2 ሷ𝜑 + 𝑚2𝑔 sin𝜑 = 0 or ሷ𝜑 +
𝑔

𝑙2
sin𝜑 = 0

11
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Show that Lagrange’s Equation 𝑄𝑗 =
𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗
can also be written as  

𝑄𝑗 =
𝜕 ሶ𝑇

𝜕 ሶ𝑞𝑗
− 2

𝜕𝑇

𝜕𝑞𝑗
known as Nielsen Form of Lagrange’s equations.

Solution: Since 𝑇 = 𝑇(𝑞𝑖 , ሶ𝑞𝑖)

𝑑𝑇

𝑑𝑡
= σ𝑖

𝜕𝑇

𝜕𝑞𝑖
ሶ𝑞𝑖 +

𝜕𝑇

𝜕 ሶ𝑞𝑖
ሷ𝑞𝑖

⇒ ሶ𝑇 = σ𝑖
𝜕𝑇

𝜕𝑞𝑖
ሶ𝑞𝑖 +

𝜕𝑇

𝜕 ሶ𝑞𝑖
ሷ𝑞𝑖

⇒
𝜕 ሶ𝑇

𝜕 ሶ𝑞𝑗
= σ𝑖

𝜕

𝜕 ሶ𝑞𝑗

𝜕𝑇

𝜕𝑞𝑖
ሶ𝑞𝑖 +

𝜕𝑇

𝜕𝑞𝑗
+ σ𝑖

𝜕

𝜕 ሶ𝑞𝑗

𝜕𝑇

𝜕 ሶ𝑞𝑖
ሷ𝑞𝑖

⇒
𝜕 ሶ𝑇

𝜕 ሶ𝑞𝑗
= σ𝑖

𝜕

𝜕𝑞𝑖

𝜕𝑇

𝜕 ሶ𝑞𝑗
ሶ𝑞𝑖 +

𝜕

𝜕 ሶ𝑞𝑖

𝜕𝑇

𝜕 ሶ𝑞𝑗
ሷ𝑞𝑖 +

𝜕𝑇

𝜕𝑞𝑗
= σ𝑖

𝜕

𝜕𝑞𝑖
𝑋 ሶ𝑞𝑖 +

𝜕

𝜕 ሶ𝑞𝑖
𝑋 ሷ𝑞𝑖 +

𝜕𝑇

𝜕𝑞𝑗

⇒
𝜕 ሶ𝑇

𝜕 ሶ𝑞𝑗
=

𝑑𝑋

𝑑𝑡
+

𝜕𝑇

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
+

𝜕𝑇

𝜕𝑞𝑗
for 𝑋 = 𝑋(𝑞𝑖 , ሶ𝑞𝑖) 12
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⇒
𝜕 ሶ𝑇

𝜕 ሶ𝑞𝑗
=

𝑑𝑋

𝑑𝑡
+

𝜕𝑇

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
+

𝜕𝑇

𝜕𝑞𝑗
for 𝑋 = 𝑋(𝑞𝑖 , ሶ𝑞𝑖)

Now 

⇒
𝜕 ሶ𝑇

𝜕 ሶ𝑞𝑗
− 2

𝜕𝑇

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
+

𝜕𝑇

𝜕𝑞𝑗
− 2

𝜕𝑇

𝜕𝑞𝑗

⇒
𝜕 ሶ𝑇

𝜕 ሶ𝑞𝑗
− 2

𝜕𝑇

𝜕𝑞𝑗
=

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞𝑗
−

𝜕𝑇

𝜕𝑞𝑗
= 𝑄𝑗

⇒
𝜕 ሶ𝑇

𝜕 ሶ𝑞𝑗
− 2

𝜕𝑇

𝜕𝑞𝑗
= 𝑄𝑗

13

Nielsen Form Of Lagrange’s Equation



Let q1, q2, q3, ……qn be a set of independent generalized coordinates for a system of n

degrees of freedom with a Lagrangian L(q, ሶq, t). Suppose we transform to another set of

independent coordinates 𝑠1, 𝑠2, 𝑠3, …… 𝑠𝑛 by mean of transformation equations.

𝑞𝑖 = 𝑞𝑖 𝑠1, 𝑠2, 𝑠3, …… 𝑠𝑛, 𝑡

(such a transformation is called a point transformation.) show that if the Lagrangian

function is expressed as a function of 𝑠1, 𝑠2, 𝑠3, …… 𝑠𝑛 and t through the equations of

transformation, then L satisfies Lagrange’s equation with respect to the s coordinates

⇒
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
−
𝜕𝐿

𝜕𝑠𝑗
= 0

In other words, the form of Lagrange’s equitation is invariant under point transformations. 14
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𝑞𝑖 = 𝑞𝑖 𝑠1, 𝑠2, 𝑠3, …… 𝑠𝑛, 𝑡

ሶ𝑞𝑖 = σ𝑗
𝜕𝑞𝑖

𝜕𝑠𝑗
ሶ𝑠𝑗 +

𝜕𝑞𝑖

𝜕𝑡

And 𝐿 = 𝐿 𝑞𝑖 , ሶ𝑞𝑖 , 𝑡 = 𝐿 𝑞𝑖 𝑠𝑗, 𝑡 , σ𝑗
𝜕𝑞𝑖

𝜕𝑠𝑗
ሶ𝑠𝑗 +

𝜕𝑞𝑖

𝜕𝑡
, 𝑡

𝜕𝐿

𝜕𝑠𝑗
= σ𝑖

𝜕𝐿

𝜕𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
+ σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕

𝜕𝑠𝑗
σ𝑗

𝜕𝑞𝑖

𝜕𝑠𝑗
ሶ𝑠𝑗 +

𝜕𝑞𝑖

𝜕𝑡
+

𝜕𝐿

𝜕𝑡

𝜕𝑡

𝜕𝑠𝑗

𝜕𝐿

𝜕𝑠𝑗
= σ𝑖

𝜕𝐿

𝜕𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
+ σ𝑖,𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗
2 ሶ𝑠𝑗 + σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗𝜕𝑡

Now
𝜕𝐿

𝜕 ሶ𝑠𝑘
= σ𝑖

𝜕𝐿

𝜕𝑞𝑖

𝜕𝑞𝑖

ሶ𝑠𝑘
+ σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕 ሶ𝑞𝑖

𝜕 ሶ𝑠𝑘
+

𝜕𝐿

𝜕𝑡

𝜕𝑡

𝜕 ሶ𝑠𝑘

𝜕𝐿

𝜕 ሶ𝑠𝑘
= σ𝑖

𝜕𝐿

𝜕𝑞𝑖

𝜕𝑞𝑖

ሶ𝑠𝑘
+ σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕

𝜕 ሶ𝑠𝑘
σ𝑗

𝜕𝑞𝑖

𝜕𝑠𝑗
ሶ𝑠𝑗 +

𝜕𝑞𝑖

𝜕𝑡
+

𝜕𝐿

𝜕𝑡

𝜕𝑡

𝜕 ሶ𝑠𝑘

𝜕𝐿

𝜕 ሶ𝑠𝑘
= σ𝑖,𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗

𝜕 ሶ𝑠𝑗

𝜕 ሶ𝑠𝑘
15
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𝜕𝐿

𝜕 ሶ𝑠𝑘
= σ𝑖,𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
𝛿𝑗𝑘 where 𝛿𝑗𝑘 ቊ

1 𝑓𝑜𝑟 𝑗 = 𝑘
0 𝑓𝑜𝑟 𝑗 ≠ 𝑘

𝜕𝐿

𝜕 ሶ𝑠𝑘
= σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑘
𝛿𝑘𝑘 = σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑘

And for ሶ𝑠𝑗

𝜕𝐿

𝜕 ሶ𝑠𝑗
= σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
+

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝑑

𝑑𝑡

𝜕𝑞𝑖

𝜕𝑠𝑗

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
+

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕

𝜕𝑠𝑗

𝑑𝑞𝑖

𝑑𝑡

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
+

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕

𝜕𝑠𝑗
σ𝑗

𝜕𝑞𝑖

𝜕𝑠𝑗
ሶ𝑠𝑗 +

𝜕𝑞𝑖

𝜕𝑡
16
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𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
+

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕

𝜕𝑠𝑗
σ𝑗

𝜕𝑞𝑖

𝜕𝑠𝑗
ሶ𝑠𝑗 +

𝜕𝑞𝑖

𝜕𝑡

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
+ σ𝑖,𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗
2 ሶ𝑠𝑗 + σ𝑖,𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗

𝜕 ሶ𝑠𝑗

𝜕𝑠𝑗
+ σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗𝜕𝑡

⇒
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
−

𝜕𝐿

𝜕𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
+ σ𝑖,𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗
2 ሶ𝑠𝑗 + σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗𝜕𝑡
− σ𝑖

𝜕𝐿

𝜕𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
− σ𝑖,𝑗

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗
2 ሶ𝑠𝑗 − σ𝑖

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕2𝑞𝑖

𝜕𝑠𝑗𝜕𝑡

⇒
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
−

𝜕𝐿

𝜕𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
−σ𝑖

𝜕𝐿

𝜕𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗

⇒
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑠𝑗
−

𝜕𝐿

𝜕𝑠𝑗
= σ𝑖

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
−

𝜕𝐿

𝜕𝑞𝑖

𝜕𝑞𝑖

𝜕𝑠𝑗
= σ𝑖 0

𝜕𝑞𝑖

𝜕𝑠𝑗
= 0

Hence the Lagrange’s equitation is invariant under point transformations.

17
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For a system where force is derivable from a scalar potential Lagrange’s eq is 

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 0

In case if force is not derivable from scalar potential or if the force has a component, 

which is not derivable from potential such as 𝐹 ≠ −∇𝑉

Then
𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑗
−

𝜕𝐿

𝜕𝑞𝑗
= 𝑄𝑗 where is not derivable from scaler potential.

Such a situation often arises when frictional forces are present. Since the frictional 

force is proportional to the velocity 

𝐹𝑓𝑥 = −𝑘𝑥𝑣𝑥
18
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The frictional force of this type may be derivable a function Ꞙ known as Raleigh 

dissipation function

Ꞙ=
1

2
𝑘𝑣2 =

1

2
σ𝑖 𝑘𝑥𝑣𝑖𝑥

2 + 𝑘𝑦𝑣𝑖𝑦
2 + 𝑘𝑧𝑣𝑖𝑧

2

𝐹𝑓𝑥 = −
𝜕Ꞙ
𝜕𝑣𝑥

= −∇𝑣Ꞙ

Now the work done by such force is 

𝑑𝑤𝑓 = −𝐹𝑓 . 𝑑𝑟 = −𝐹𝑓 . 𝑣𝑑𝑡 = 𝑘𝑣2𝑑𝑡

Will be the amount of energy dissipated due to friction.

The component of the generalized force resulting from the force of friction 

𝑄𝑗 = σ𝑖 𝐹𝑖
𝜕𝑟𝑖

𝜕𝑞𝑗
= −σ𝑖

𝜕Ꞙ
𝜕𝑣

𝜕𝑟𝑖

𝜕𝑞𝑗
= −σ𝑖

𝜕Ꞙ
𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑞𝑗

19
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𝑄𝑗 = −σ𝑖
𝜕Ꞙ
𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑟𝑖

𝜕 ሶ𝑞𝑗

𝑄𝑗 = −
𝜕Ꞙ
𝜕 ሶ𝑞𝑗

where Ꞙ=Ꞙ( ሶ𝑟𝑖)

An example is Stoke’s law whereby a sphere of radius “a” moving at a speed “V” in 

a medium of viscosity η experience the friction drag force. The Lagrange’s equation 

for dissipative system

𝑑

𝑑𝑡

𝜕𝐿

𝜕 ሶ𝑞𝑖
−

𝜕𝐿

𝜕𝑞𝑖
+

𝜕Ꞙ
𝜕 ሶ𝑞𝑗

= 0

For such system two scalar functions “L” and “Ꞙ” should be defined to find the 

equation of motion.
20
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21

Solve

9. The electromagnetic field is invariant under a gauge transformation of the scalar vector potential given by

𝑨 → 𝑨 + 𝜵𝝍 𝒓, 𝒕 & 𝝋 → 𝝋−
𝟏

𝒄

𝝏𝝋

𝝏𝒕

Where 𝝍 is arbitrary(but differentiable). What effect does this gauge transformation have on the Lagrangian of a

particle moving in the electromagnetic field? Is the motion affected?

16. A particle moves in a plane under the influence of a force action towards a centre of force, whose magnitude is

𝑭 =
𝟏

𝒓𝟐
𝟏 −

ሶ𝒓𝟐 − 𝟐 ሷ𝒓𝒓

𝒄𝟐

Where r is the distance of particle to the centre of force.. Find the generalized potential that will result in such a

force and form that the Lagrangian for the motion in a plane. ( The expression for F represents the force between

two charges in Weber's electrodynamics.)

15. A point particle moves in space under the influence of a force derivable from a generalized potential of the form

𝑼 𝒓, 𝒗 = 𝑽 𝒓 + 𝝈. 𝑳
where r is the radius vector from a fixed point, L is the angular momentum about that point and 𝝈 is a fixed vector

in space

a) Find the component of force on the particle in both cartesian and spherical polar coordinates on the basis of Eq.

1.58

b) Show that the component in the two coordinate systems are related to each other as in eq. 1.49.

c) Obtain the equation of motion in spherical polar coordinates.
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