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2.1 Constraints

Constraints are the geometrical or kinematical restrictions on the motion of the
particle OR system of the particles.

Such system is called Constrained systems and their motion is known as
constrained or restricted motion.

Rigid body — distance between any two particles remains unchanged.
Gas molecules — within the container is restricted by the walls of the vessels.

Classification of Constraints

Holonomic constraints:- Constraints are said to be holonomic if the conditions %z’j
of all the constraints can be expressed as equations connecting the coordinates of < 2
the particles and possible time in the form p © .
? J
_ d
f(ryoryrye..,r,t) =0 (2.1) & ©

In Cartesian coordinates equation (2.1) can be written as,

[ (X, V0205 X0y Yoy Zoy ee van X, ¥,z t) =0 (2.2)
Y iy Xp Vi | @




2.1 Constraints

Non-holonomic constraints: - If the conditions of the constraints can not be
expressed as equations connecting the coordinates of particles as In case of
holonomic, they are called as non-holonomic constraints.

The conditions of these constraints are expressed in the form of inequalities.

fOr g ... =0 (2.3) .

Examples of non-holonomic constraints

1. Constraints involved in the motion of a particle placed on the
surface of a solid sphere r’-a2>0. (2.4)

2. An object rolling on the rough surface without slipping.

3. Constraints involved in the motion of gas molecules in a r’-a?z0
container.




Constraints

Scleronomic and Rheonomic Constraints: - The constraints which v
are independent of time are called Scleronomic constraints and the
constraints which contain time explicitly, called rheonomic constraints
Examples: - A bead sliding on a rigid curved wire fixed in space Is
obviously subjected to Scleronomic constraints and if the wire Is
moving Is prescribed fashion the constraints become Rheonomic.

Consider a pendulum of constant length and fixe pivot point

x24+yt—12=0 Scleronomic Constraint

If the pivot point is moving along X axis

x' = x,coswt

The equation of motion will be

(x —x,coswt)? +y? —1? =0 Rheonomic Constraint @




Problems Due to Constraints

1. The coordinates are no longer independent.
They are connected by equation of constraints for rigid body
ri-rj|2-Cij2:O

x2+y2—14=0

2. To apply Newton’s 2"d Law, we need total force acting on each particle. Force of

Constraints are not known or easily calculated.

Forces are vector quantities; the vector nature of forces also makes it difficult to

©

solve the problem



Generalized Coordinates

How to solve problems associated with Constraints.....
Consider a system of N-particles. If each particle has 3-degrees of freedom.
Total freedom of system is 3N

If k is the number of holonomic constraints on the system.

The total number of independent coordinates s = 3N — k X = rsin 0 cos
We define “s” number of independent coordinates x =x(r,0,p)
G G2 Q3 e - qs orjust  q,wherei=1234..s) y =rsin@sing
— ) 9)
Such that y=yr.6.¢)
Z=1cos 0
ri =71i(q1, 92,93/ -+ - qs) 2 = 2(r. 0)

q; = q;(ry, 715,73, ... ... ,)

©



Generalized Coordinates

In case of pendulum
r = L = constant
Independent coordinate is g, = 6

For spherical pendulum with constant length

The coordinates (1, 8, ¢) since r = constant
We have

(q1,9,) = (6, ¢) are independent coordinates,
To overcome the second difficulty, we should formulate the mechanics such that the
unknow constraint forces disappeared in calculation.

We will be using energy (K.E +P.E), Momentum and position to solve that system. @



Generalized Coordinates

Suppose a system of N-particles. If system has n-degree (n=3N-k) of freedom then we need
n-generalized coordinates g4, g5, g3, .. ... q, to specify the configuration of holonomic

dynamical system. They may be cartesian or spherical polar coordinates etc.

The configuration of the system is expressed as function of the generalized coordinates.

ri =r; (Ch; 2,43, - .- dn t)
If the system moves from one configuration (g4, g4, g3, ... ... q,,t) 10 a neighboring configuration

(g1 +6q1,92 + 892,93 + 843, ... ... qn + 8q5)
r; + 6rl' = rl'(q]_ + 5‘11:612 + 6q2'q3 + 66]3, ...... dn + 5qn)Where ot =20

ori g 0T

ari
Sri =aq1 5q1+ 24, 5q2 T

0qn

dqn

or; = }ng—;jﬁqj (Virtual Displacement)




Virtual Work

virtual Displacement A virtual displacement is an arbitrary instantons, infinitesimal
displacement of a dynamical system. Independent of time and consistent with the

constraints of the system.

Principle of virtual work
A system under workless constraints is in equilibrium under applied forces, if and
only if zero virtual work is done by the applied forces in an arbitrary infinitesimal

displacement satisfying constraints.

ZiFi'5ri=0 where Fi=Fi(e)+ZiFii




Generalized Velocity

The time derivative of the generalized coordinates is called generalized velocity
associated with co-ordinates for an unconstrained system, For a system with n-degree

of freedom and defined with configuration

The velocity is

Where ¢ Is generalized velocity.




Generalized Acceleration

Components of generalized acceleration are obtained by differentiating above equation
d_fi_d(n or; . arl)_ n Oorid . n dorg . | dor

L™ at — at \“J 16qq ot Jj= 1aq dtq1+ J= 1dt6qq dt ot
. or; d dr; 6 dar;
n | n l l
L J=19q; qj J= 1aq dt Pkl at dt
F.o—yn arl . n 0 (arl dqq or; dq, n n or; dqn ar,-) .
L J=13q; q, J=19q;\dq, dt = aq, dt dq, dt = ot q
i (6ri aqq 6rl- aq, + + 6rl- aqn 61',-)
dt \dq, dt dq, dt dq, dt ot
.. or; d ( or; . ar) . d ( ar; . ar)
n n n i i n i i
r; = g T — 2 S _
l ] 166] q] + Jj=1 aqj k=1 aq qk + ot q] + ot k=1 aqk qk +
. or; 0°r; 0°r 0°r; 0°1;
n l . . n L ° l
r. g — . —
l j= 1aq QJ +Z] k—laq aq,qkq] + ] 1ata q] k= 1ataqk(’h€+ ot2
n 0r; 0°r; 62r, . 0°r;

Ti= Lj=15, “dj + X k=13, oq; Qkdj +2 2= 15000, U T 2
Above equation makes it clear that the cartesian components are not linear functions of components of

generalized acceleration ¢; alone, but depend quadratically and linearly on generalized velocity

component as qg;well {@)



D’ Alembert Principle

The principle state that the particle will be in equilibrium under a force

F; equal to the actual force plus a reverse effective force p;

F; =p;
Fi—-pi=0
Y.;(Fi—pi)-6r; =0 where F; —F(e)+Z] i

ZF(B) 5rl+Zl] ji 5ri_2ipi°5ri:()

If we restrict ourselves to workless constrgxints.

ZiFi(e) - Or; + Zi,j p/drl- — Y. p;i-0r; =0

Si(F'® —pi) 61 =0




Lagrange’s Equation

Suppose a system of N-particles having masses mq,m,, ms, ... ... my at position
7,172,173, o on ry respectively. If system has n-degree (n=3N-k) of freedom then
we need n-generalized coordinates g, g5, g3, ... ... q,, to specify the configuration

of holonomic dynamical system.

ri=r; (qli q2, 43, - - dn» t)

dr; _ r.i _ or; dq1+ or; dq- _— or; dqn n or; _ n—1%CI' ar;

dt dq, dt 09q, dt dq, dt ot J=Laq; " " ot

or; 0 (or; . , Or; or; or; or;\ _ 0r;0qj _ or;
i = 5g; (Bacnt Sacda bk Satd b et g ) = Sl = 20
d; dj \0d1 dz q; dn t qj 0q;j d;

afi ar,




Lagrange’s Equation
arl

arl arl

aCln

Considering the virtual displacement =ér; =

5q1 5q2 ...... 54,

Qj = Iiv=1F'-_..

Q; is generalized force whose dimensions are not necessarily equal to the force.
It may be force or torque. Now using the second term of D’ Alembert principle

N org
=1 Pi'arl Zl]mlrl aq; 66]]




Lagrange’s Equation

Considering the differential equation

. Or; N or; N . d 0r;
m;r; m; r . M;T;.——
l dt[ | A A aq]] 2 | A A aq +Zl L1 dt(’)q]
N .. 0r; N d . ar, N . 0T
Y MY — = Y —\lm:r:. —| — Y M:r.. —
Zl | A aq] Zl dt i L1 aq] Zl L1 aq]
~ | 51‘, 6ri
N . ar,- N d . afi N . af'i a : — P
. M;T;.—m = . — IM; T ;.—| — : M; ;. — q q;
Zl iri 9q; Zl at | iri aq;] Zl iri 9q; J J
N .. O0r; Nda o [1 .2 N O [1 .2
Y MY —— = Y — =M1 — Y — =M1
Zl Lot aq]' L dtacij 2 LU Zl aq]' y L
N .. O0r; d od [ N1 .2 0 [ N1 . 2
Y MY — = —— Y =M1 _ Y —IMT
Zl Lol aq]' dtacij Zl 2 LT L aq]' Zl 2 LU

M

=
3

Nﬁ .
|
[
|




Lagrange’s Equation

Using eq 1 and eqg 2 in the D’ Alembert principle

. d 0T
%i(Fi'® —pi) - 6ri = 371 Q;6q; — Xy [dt 24 aq,] 0q; =0
. d 0T
Zi(Fi(e) B pi) 10T = ?=1 [Qf  dtdq; an] °q; =0
d oT oT
U= %5q " aq;

Above equation is known as Lagrange’s equation.

Where Q; Is generalized force. Its either
1)  Gravitational Force

1)  Spring force

1) External applied

Iv) Electric or magnetic force

v) Torque




Lagrange’s Mechanics Examples

A Particle of mass “m” moves in a plane. Find its equation in cartesian coordinates.

Solution: Consider the coordinates of particle having mass m is r(x,y) or v = xi 4+ yj
In plane. Let the force acting in x and y direction be F, and F, respectively.

Kinetic energy =T = %m(a’cz + y%)

d oT oT

Now Lagrange’s Equation  Q; = acod,  aq; can be written as
: d T 4T o7 .
For x coordinate Q, = Frry e . & Q, = an = F,l

w3~ =~ arazlam TN~ 5 smG /y‘zﬂ

d oT _ oT
dt 0x ox

d . .
=— (mx) = m¥

Therefore, E,i = mx




Lagrange’s Mechanics Examples

For y coordinate

d 0T 0T or

Oy =3y " o & Qy:Fyaszf
49T _oT _ 2y = 2 ;2
atdy  dy dtay[ m(x* +y)] [m(x y)]
22 2 =2 (my) = mj
dt dy 0dy

Or Ej=my
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Lagrange’s Mechanics Examples

A Particle of mass “m” moves In a plane. Find its equation in plane polar coordinates.

Solution: Consider the coordinates of particle having mass “m” are (r,6) in plane. Let
the force acting in “»”" and “6” direction be “F,” and “F,” respectively.

Kineticenergy =T = Em(f‘z +1r262)

d oT oT

Now Lagrange’s Equation  Q; = acod,  aq; can be written as
: d T 9T o7 .
For r coordinate Q, = T T & Q, = F"E = E.1

w3~ ar = arar [pM07 +7000)| = 52 [om(F +r20)

d oT _ oT
dt or or

Therefore, B# = m(¥ — r62) £

= ;t (mi) — mro? = m(# — réz)




Lagrange’s Mechanics Examples

For 8 coordinate

d T aT 7 "

Qo =55 "3 & Qe—Feag—Ferae—Feré’
aorT _OoT _ 2 2] [ 2 2‘2]
at 90 90 dt@@[ m(i? +r26?) m(i? +126?)

d 0T 0T d . ) e
= (mrze) = m(rze + 2rr0)
d 0T 0T 3 .
il mr(r@ + 27"6)

Or For = mr(r0 + 276)

Fgb = m(ré + 21’"9)@




Lagrange’s Equation For conservative force

For conservative force which can be derivable from a scalar Potential

F,

=

Qj

==Vl
_yN p. 9% _ _yN gy 9T
QJ =1 l'aqj Zl=1 ll'aqj
__yN Wi _ O yN
Q] Zl:laqj aqj =1"1
Therefore, the Lagrange's Equation can be written as
_gor or _ v _dor  or
dtacij aq]' aq]' dtacij aq]'
d o(T-v) o(T-V
N ( . ) d( ):0
dt aqj aq]'
d JOL oL
— = _ = =0

vV - dr = (%i+%j+%E)V-(dxi+dyj+dzl€)
PV - dr = (Z—Zi+3—§j+‘3—§l€)-(dxi+dyj+dzk)

v v v ,
vV .dr —adx+@dy+5dz =dV
For a function V(X,y,2)

av ov av
dv —adx+$dy+5dz




Lagrange’s Equation For conservative force

d OL _ oL 0
dtaC[j aq]'_

Where L = T —V s called Lagrangian of the system.
This equation involves only Kinetic and potential energy which are scalar quantities.

Hence, we have developed our mechanics such that we do not require all information
about the forces, which were necessary in Newtonian mechanics,

When we transform from space coordinates system to generalized coordinates
system, the forces remain invariant.

Whereas the Lagrangian L = T — V is invariant under coordinate transformation.




Lagrange’s Equation For Velocity dependent potential

For avelocity dependent potential U(q;, q;) the generalize force can be derivable as
oU  d dU
U= Toq g,
Therefore, the Lagrange's Equation can be written as

d JL oL

O~ aaq, Tag =Y
daT-v) _aT-v) _
dt 94 dq;
4L _ oL _
dtaqj aq,-

Where L =T(qj, q;) —U(gj, q;)

The practical example of this case is motion of charged particle in electromagnetic field. ©



How to solve Problems using Lagrange’s Equation

1. lIdentify the generalize coordinates (independent)

2. Express kinetic energy and Potential Energy into terms
of independent coordinates

3. Find L=T-V

4. Use Lagrange’s equation

d OL oL

LZ_2 —

dtaC[j aq]' -

q; Is Independent coordinate




Lagrange’s Mechanics Examples

A Particle of mass “m” attached to spring and pulled by a force “F” to a distance X.

Find its equation of motion.

Solution: Kinetic energy =T = %mfcz,

Potential energy =V = %kxz

= Lagrangian=L =T — V = %ma’cz — %kx2

Now Lagrange’s Equation

doL 9L _ d a[lmx _ 1./ [ 2 ——kx —0
dt 9x Ox  dt ox -

doL dL d . y
- — = — — —
prievialea b (mx)+kx=mi+kx=0
= m¥ =—kx or mx =—kx




For y coordinate
y=1cosH
x =1sin@
T = 1 mi26?
2
V =—-mgy =—mglcos0
Lagrangian

Independent coordinates is only 6

Therefore, Lagrange’s equation can be written as

4oL _aL_
dtdd 960
da

dt 00

[1 ml?6? + mgl cos 0]

Simple Pendulum

amplitude'gﬁr

L =T—V=%m1292+mglc058

frictionless pivot

massless rod

' Lsin @
bob's ™ - e
trajectory -~ massive bob
equilibrium
position

Emlzé2 + mgl cos 0] =0




Simple Pendulum

d - .
— |mi26]| — [-mglsin6] = 0
mi%6 + mglsin@ = 0

ml20 + mglsind =0

§+%Sin9 =0

fisverysmall sinf =6

6+76=0
6=-20
6 o —6

The motion of simple pendulum will be simple hormonic motion.

[cos@

y:

x =1sinf




Compound Pendulum

A rigid body capable to oscillate in a plane about a fix point is called compound pendulum.

Let us consider a body of mass m suspended at pivot point “P”. If “I” is the distance
between suspension point and center of mass G. Where radius of gyrating is “k” (root mean

2
square distance of particles or k2 = [ HT2HTE+3Tal [y o0 | = iz
T =-16?
2
V = —mglcos@
Lagrangian L=T -V = %192 + mgl cos 6

Displaced
position

Therefore, Lagrange’s equation can be written as——>——- =

10 + mglsin® = 0

. l . . _
=>9+%51n8 =0or= H+i—;sm0 =0




Projectile Motion

T = %m(iﬂz +1262)
V =mgy = mgrsin0
L=T-V = %m(f‘z +120%) —mgrsiné

In projectile motion we have tow generalized coordinates r and 6

9\
Therefore, we must solve two Lagrange’s equation for » and 6 /

d 0L 0L 0 rsin@ \
acor or s

. \
= m(# —762%) + mgsind =0
d oL oL
a8 96 O

= m(ré — 27"6'?) + mg cosf = (




Lagrange’s Equation for planetary motion

Lagrange’s Equation of planetary motion under central potential V = —mu/r
T = %m(fz +1262)

V=-—="

r
L=T—V=%m(7'"2+r29°2)+%

Generalized coordinates are “r and “6”, Therefore we must solve two Lagrange’s equation
d dL OL

aor or O LT (O Earth
dt or or fﬁ :J *1\
2 i “«  Gravitational
oo b m . r ‘
= m(r - 7‘92) + _ét — 0 " ¥ ' attraction
r L1
| O
iﬁ - % — O ‘1‘ "l
dt 06 90
d . . . L
> % (mr26)=0  =>mr2f=L=constant| -




Theorem

Prove that in a simple dynamical conservative system T + V = constant

Proof: for a conservative system

We must prove % IT+V]=0

We know that for conservative system V=V(q, 92, 93, - . dr)

T = T(Qll 2,43, - --- dn» C.I1r C.IZ; C.IB """ CITL)
Therefore L=T-V= L(Ch' 2,43, - .- dn éh! (:IZ' (:IS """ Qn)

oL T 3 <yl .
Now LT O gLy 2




And

And

Theorem

Z?CIjaa_;]_Zi,jmlrl S—Z_q}
Z?Qj;—;_zllvmlfiZ?g_;qJ
Z?O'Ij:—C.ILj—Z{VmJiZ?g—;%
53457 = Sl mi? = 25Y mi?
zyqj:—;j—ZT

. OL
Y} a5 —L=2T—1

. OL
Yjdj5e —L=2T—T+V=T+V

because

aq]

ar; _ Or

2q

J

i'&f”i =Zj aquj




And

%[ ?O'Ij;—qu—L
%[E?Qj;—;j—ll
%[Z?C'Ij:—;—L
%[Z?flj:—;j—L

d ron . OL
E[Zj qja_qj_l‘

. 0L
_Z?Qja_qj_l'_

Theorem

oL d oL
— VYo, - nsy - - -
] _ZJ q] aC'Ij-l_ J qj dtaq]' L
oL d oL
— V5. = ny 2 -2 _ yN
oL d oL
— Yo ne - -
] - Z%?q] t J qj dt dq;
_gng 40 _smil
] 4 q] dtaq]' J aq]'q]
j=yr L2l s =
J dtaqj' aq]' J
= constant

=2T — L =T+ V = constant




Spherical Pendulum

Solution: in the case of spherical pendulum the bob moves on a s smooth sphere of radius “r”. The
position of the bob is located by spherical coordinates (r, 8, ¢). The distance r of the bob from the
center of the sphere on which the bod moves is radius (constant) of the spherg

T = %mrz(éz +sin?0¢?) & V =-—mgrcosH by

L=T-V =%mr2(92 +sin? 8 @?) + mgr cos 6 05

1

Generalized coordinates are 6 and ¢, Therefore we must solve two Lagrange’s e
d dL oL

226 20 =V
4oL _dL_
dtdep 9@




Atwood Machine

Atwood machine is a simple machine where two masses can move over a

frictional less pully.

Equation of motion for m,

Subtraction Equation 1 from equation 2

T —my,g =mya

T'—myg=—ma
—m,g + myg = mya+mya
e (m;—m;)
—a=y=4g (mq+m;)

}T
mng

+y/\

¢

M-

M




Atwood Machine

Atwood machine is a simple machine where two masses can move over a

frictional less pully.

1 ., 1 ., 1.
T = 5m1y2 +Em2y2 = E)’Z(T”h +my) &

V=-mgy—myg(l—y)=—gy(m —m;)—my0l

1,
L=T-V= E}’z("h +my) + gy(m; —my) + mygl

Generalized coordinate is g =y

4oL _oL_
dtdy dy

= = [y(my +mz)] — glmy —my) = 0

= y(m; + my) —g(my —my) =0

(m;—m;)
(m1+my)

=>y=g

+y/_\
x

}T
mng

y

-

M-

M

l—y

$T
m:zg

Note: If we consider the motion of pully

Kinetic energy must include a term

1., - 1. y2
~10% =-1%
2 2 RZ

(m;—-m;)

Andj}=g(

1
m-q +m2 +ﬁ)

which is rotating about a fixed axis. The

(o)



Two masses attached with springs

X1 X

-

1 . 1 .
T =-myx? +=Mmyxs
2 2 K
1

l
|
m

1 1 1
IV = Eklxlz + ;k3x22 +;k2(x1 — XZ)Z

1 o 1. 1 1 1
L= Emlxlz -+ Emzxzz - [E kyx? + Ekgxg + -k (g — x2)2]

In this problem we have two degrees of freedom for x;and x,

d oL 0L d

dtor, ox - ar k) Tk = ke (a =)l

d oL oL )
dt 97, — e =my¥, + x1(ky + kp) — koxp

And
d oL oL ,,
e — o = myX, + x,(ks + ky) — kpxg




Derivative 8 Page No 30

If L is a Lagrangian for a system of n degree of freedom satisfying Lagrange’s equation.
Show by direct substitution that

d
L, =L+EF(CI1,CI2,Q3, ...... qn,t)

also satisfies Lagrange’s equating where F is any arbitrary but differentiable function of its
arguments.

oL’ oL 0 d

Solution: = + ——
aq]' aq]' aqj'dt

oL’ oL 0 d
And —=—+——
aqj' aq]' aq]' dt

Since F(ql, q2,q3) - - qn t)
. 6F
ar _ Za_q] R
d dF _ OF

a(,']j dt aq]'



Derivative 8 Page No 30

TherefOre ia_L, — iﬁ a dF — iﬁ ia_F
! dt 8q;  dtdq; = dt\dq; dt)  dtdq; = dtdq;
oL’ oL 0 dF
And — =
aCIj aqj' aqj' dt
Therefore 40U oV _don dor 0L _ 0 dF
! dt dq; 9q; dtag; dtaq] aqj dq; dt
iaL'_aL'_iaL_ 4|2 9F 4 oF
dt ac']j aq]' - dtaqj' dtaqj' dtan'

d oL' oL d oL

dt aq; aq; dtac'[j_aq]_o




Exercise: Problem 20

m2x4

12

Where V is some differentiable function of x Find the equation of motion for x(t). Describe the
physical nature of the system on the basis of this equation

+ mx2V, — V2

A particle of mass m moves in one dimension such that it has Lagrangian L =

oL  m?2x3

7 3 + 2mxV,

d oL d av.

—— = m?x%% + 2miV,+ 2mx —V, = m?x%¥% + 2miV,+ 2mx? ==

dt 0x dt 0x

oL .5 OV, av.

— =mx?—= -2V, ==

0x 0x

- = = = + — —X — X

% o mex2x + 2mxV,+ 2mx? 5, mMxT =+ 2V, ™

7% ax—mxx+2me + mx 6x+2anx

d dL  dL ) ( avx) ( avx) _ ( 3y avx) .2 _
i ax—mx mx+ax + 2V, mx+ax = (m¥ + > (mx=+2V,) =0

mjc'z—% & lmx + 1V, =0 (@)




Exercise: Problem 20

Notice that 2 (Smi? + ;) = mik + i = % (mi + %)
dt \2 0x 0x

So, If we denote

E = %ma’cz + 1,
Equation become X (ma‘c‘ + %) (mx? +2V,) =EQRE)=0
Or EE=0
If we forget about the trivial case where the particles is not moving x # 0
This becomes
EE=0
Notice that %Ez =2EE =0

So, this is the motion where the quantity E? is conserved.




Exercise: Problem 20

In another nontrivial case where E # 0 then we can get £ = 0

. avV,
E =X(m5&+—x)

Since we have shown that

0x

The Equation of motion in this case Is
—
mx+—=20
dx
This is motion in conservative field force described by potential V,
In the case E # 0 we have

Which mean that E is some given constant, In the case of E=0 again E is a constant just in this
particular case that constant is equation to zero.

Thus, we can use that in both cases the equation if motion is given by
1

=2 _
me +Vx E @



Exercise: Problem 20

Where E=constant expressing x we get

Integrating this equation, we can obtain x(t)

This is the motion of the particle in one dimension in the conservative potential V. X(t) is obtained
from

“mx? +V, = E

Knowing what V, Is.
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Velocity dependent Potential

Charge Particle in Electromagnetic field

Solution: First we will find the potential using maxwells equations.

VXE+ ‘?)—If =0 Maxwell —Faraday Law of electromagnetic induction.
=>W><E+%(V></D =0
>Vx B+ =
at

And VxVp=0 For any scalar potential

E+E —VQD
— —= 0A
= E=-Vp-="

@ — scalar Potential & A - vector potential




Velocity dependent Potential

F=q(E+7%xB)=q[-Vp—2+7x (Vx4

For 1-dimensional
Fo— 9P _ %
Fx - q[ ax

To find the third Term

i 7k
px|Z 2 2l _|oxp (%
ax ody oz|| Ay
A, A A
Yy Z X
i j k
Uy vy, v,
Jdy 0z 0z 0x 0x ay 1,

+ {7 X (V x A)},]

_ %)
0z

vy (

4y

ox

~fO0A
+J(azx

d0A,

0 Ay
ay

0x

),

) +k GG,

0A,
0z

Ay

dA,
ox

Solving for x direction only

)

0A,
dy




Velocity dependent Potential

5% (7 X AN = p 2y, 0Ax . 0A; 94y
= {U X (VXA)}, =7, x ~ Wy t Vv, — v,
X (P X AN =, O, QAy | 9Ar A Ay 04y
:{vX(VXA)}x—vxax+vy 6x+vzax Vx > vyay Uz
_ = — _i A 0A,dx . 0A, dy %%
:{vx(VxA)}x—ax (v-4) [ax dt 0y dt 0z dt]
5 X (7 X AV = 2 (5. A) — x4 A
:{vx(VxA)}x—ax(v A) — T
dAy  0Ay , 0Axdx | 0Aydy  0Azdz
S Eo=q[-22 -2 9 (5.[) - xy ) ac ~ ot T ovar oy ac ! oxa
ox ot 0x dt ot 0Ayx dx 0Ayx dy 0A dz| _ dAy 0Ay
~ 2o 8 o i i B
= F=q- 2+ (5 A) - 2] And
- 0Xx ox dt _ 9 . - dA dA
B 5 ~ aA {ﬁx(VxA)}y=5(v-A)—dty Bty
= Fh=ql-g o= @- A} =27 R .
g {ﬁx(VxA)}Z=£(17-A)—dtZ+a—tZ
F=ql-Tlp- (@ -D)}-22(5- )

dt ov _



Velocity dependent Potential

= = - _ d o - _
>F=q|-Tp- A -0} +-—{p— (4 D)} % _ g
v
>F=-7u+Lly And
dt ov

g .~ _ -9 _ =
Therefore, a(A.v)_A.%v_A

U=qp—q(4d-7)




Solve Lagrange’s equation of Charge particle in electromagnetic field

Kinetic energy T = %mv’*z

Potential Energy U=qo —q(4-7) =qp —q(4-T1)

Lagrangian
1 _ .
L=T—U=§m7'"2—q<p+q(/1-f)
: : : ddL L _
Using Lagrange’s equation o ar—O
oL _ ~+ gA
ar 0 T4
dJdL - dA
deor 0 T T
OL _ _ 49 L 09 (X.%) = —gP V(A -7
Now — = qar+qar(A r)=—qVe +qV(A-71)




Solve Lagrange’s equation of Charge particle in electromagnetic field

d 0L 0L . dA — = = .
dtaf_ar_mr+qa+q7<ﬁ—q7(1‘1'7‘)—O

dA _0A  0Adr

=>mi‘+q[g—':+(?-\7)ﬁ]+q\7<p—ql7(/T-7°’)=O gg_gz or dt

dt ot dt or

.. = 0A = - = N dA 0A . 0A
=>mr—q(—Vgo—E)—q[V(r-A)—(r-V)A]—0 d—t_——a+r5
L 222 VA

> mi—qE —q[r x (VxA)] =0 gt gﬁ L
E=E+(T".V)A

>mi—qE —q[vxXB] =0

= mi* = qE + q[? X B]




Double Pendulum

Consider a double pendulum with masses m,; and m, attached by rigid mass less
wires of length [, and [, the angle they made with vertical axis are 8 and ¢ as
Illustrated in figure. Position of Bobs

X1 =1l;sin@ & y1 =l cos @
X, =lysinf +1l,singp & y, =11 cos8 + [, cos @
%; = 1,6 cos @ & y, = —1;0sin 6

X, =1,0cosO+ L,pcosp & y, = —(llé sinf + l,psin@ )
Kinetic energy

T — %mllféz + %mzlféz +%mzl§gb2 +m,l1,0¢ cos(8 — @)

Potential Energy=
V=-mygy; —mygy, = —mygl; cosd —m,(l; cos8 + [, cos ) @




Double Pendulum

L= %mllféz + %mzlféz + %mzlgcpz +m,l1,0¢ cos(0 — @) + mygly cos 6 +
m,g(ly cos@ + [, cos @)

In this system we have tow degrees of freedom (6, ) Therefore to solve this system
we need to solve two sperate Lagrange’s equations.

d 0L OL d 9L 0L

290 a9 0 & Eﬁ_ﬁ_o

g—g =m0 + my120 + m,l;1,¢ cos(6 — @)

d oL s y s

— 5 = (my + my) 150 + myl l,¢ cos(8 — @) — mzlllzgo(e — <p) sin(6@ — @)

oL ) i '
a0 —myli1,0¢ sin(6 — @) — (my +my)gly sin6 @




Double Pendulum

daL_aL_O
dt9d 00

= (my + my) 10 + myl,¢ cos(6 — @) — myl,@? sin(0 — @) + (my + m,)gsin(6 — @) = 0

Foro=¢p=¢p =0
= (my + my)10 + (my + m,)gsinf = 0

= [,60 + gsinf = 0




Double Pendulum

d 0L JoL

For Eﬁ—ﬁ =0

g—; = m,l2¢ + m,1,1,0 cos(6 — @)

d oL i} . e L

YT myl2¢ + myl 1,60 cos(8 — @) —myl1,0(6 — @) sin(6 — @)
g—g = myl;1,0¢ sin(6 — @) —m,gl, sin @

d 0L oL

atog g

= m,l,@ + myl16 cos(6 — @) —m,1,0?sin(0 — @) + m,gsing =0
Which is equation of motion for m,
For=0=0=6=0

=> myl, + mygsing =0 or <,b+%sin<p=0



Nielsen Form Of Lagrange’s Equation

: d oT oT :
Show that Lagrange’s Equation Q; = ——— — can also be written as
dtoq; 0q;
oT
Qj = 3 2 E known as Nielsen Form of Lagrange’s equations.
J J

Solution:  Since T = T(q;, §;)

- Z laql Ch]
., 9T
= T Zl [aql 1 aqlql]
oT d oT d oT
> Ty L+ 2y
04 lanaCIlql 04 Z‘aq] aq; 1

T o (0T . 9 (or T .
= 50 2 (7)) a5 (07 0] + 55 = 2l v

oT  dx , 0T d oT , OT .
za_q'j_dt-l_aqj_aaqj_l_aq fOIX—X(qi,qi)

qu] +an




Nielsen Form Of Lagrange’s Equation

oT ax oT d oT oT .
= o= = for X = X(q;, q;

aCIj dt aq]' dt aC[j T aq]' © (ql' ql)
Now

oT oT d oT , oT oT

dq; dq; dtoq; 0q;j aq;

aT oT d oT  OT

aqj' aq]' dtaq]' aq]

LY,

aq] aq]' J




INVARIANT UNDER POINT TRANSFORMATIONS

Let g1, 92,93, e - qn be a set of independent generalized coordinates for a system of n
degrees of freedom with a Lagrangian L(q,q,t). Suppose we transform to another set of

Independent coordinates sy, S, S3, -« ... s, by mean of transformation equations.
q; = q;(S1,52,S3, cun .. S, t)

(such a transformation is called a point transformation.) show that if the Lagrangian
function is expressed as a function of sy,s,,s3, ... ... s, and t through the equations of

transformation, then L satisfies Lagrange’s equation with respect to the s coordinates

d 0L 0L

:>dt(3$]_6$] =0

In other words, the form of Lagrange’s equitation is invariant under point transformations.



INVARIANT UNDER POINT TRANSFORMATIONS

q; = q;(S1,52,S3, .n .. Sp, t)
dq; . | 0q;
_y 4. %4
qi Z] aSj J T ot

aqi
And L =L(q;,q;,t) = L{ql(sj,t) ZJ a5, i+ _q t}

oL dL dq; oL 0 aql aql
e, Zl + i Z
s dq; 0s; aql as] J 651

oL _y dLou g L4, |y OL aqu
05 Yaq; 0s; LJ ag; as] Lag; dsjot
oL aq oL 8q; , dL ot
Now — = —
0 = Lig 9q; $ + 2 0q; 6sk ot 9k

T N
0Sg laql Sk laql ask J as; ) ot ot 9Sg

aSk LJ 6qi aSj aS‘k




INVARIANT UNDER POINT TRANSFORMATIONS

dL dq; 1forj=k
— = O; where §; :
ask ZUc’)qlas] Jk Jk Oforj+k
JdL aql JdL aql
Y Zl 5kk Zl
ask dq; 0Sg dq; 0Sk
And for s;
oL _ g 0L 2a,
631 Lag; s
4oL _ s dfoLda
dt 0s ldt aql s
ia_L_Z[ L) da aLi(%)]
dt 0sj dt aql dsj  0q;dt \0sj

iﬂ—z [ aql oL 8 (dqi)]
dtaS'j dt aql aSJ 6qias]~ dt

d OL d (0L 0q; JL 0 6 dq;i
dt 0s dt \oq;/ 0s; = 0q; 0s; J as] ot




INVARIANT UNDER POINT TRANSFORMATIONS

d JL 5 oL 0 d dq;j
a oL Z qi + & Z oq; . S] + oqi
dt 9s; dt aql dsj  0q;0sj J dsj ot

a 9L _ Z ( )ach_l_z oL 0%q; . +2 JdL 0 /651 Z L 0%q;
dtasj_ Lat \ag; 05 i,j aqlas] Sj l]aql s; 0s; i 9g; 05,0t

d oL aq oL 0°4; L 0°A4; 0L 0q; 0L/0%q; oL 0°4;
= atos;  as _Zldt(a 3s; T 2ii5a, la 5 (3935, ~ 2iiag, 23— ~Lize A
j di s] di s] qi 95j t qi 0sj 651 qi gsjot

d OL d JL 0
N - _ Zl ( ) ai oqi
dt \dq;

dt 0sj s laql s

d OL oL aL dq; dq;
- ,=Zi[—(—._) 29i — y.[0]2% = 0

dt 0s;  0s; dt \0q; aql dsj ds;j

Hence the Lagrange’s equitation is invariant under point transformations.




Rayleigh's Dissipation Force

For a system where force 1s derivable from a scalar potential Lagrange’s eq 1s

afoy o _,
dt aCIj aq]'_

In case If force Is not derivable from scalar potential or if the force has a component,

which is not derivable from potential suchas F # —VV

Then % (%) — i = Q; where Is not derivable from scaler potential.
]

Such a situation often arises when frictional forces are present. Since the frictional

force Is proportional to the velocity

Ff = —kxvx

X




Rayleigh's Dissipation Force

The frictional force of this type may be derivable a function " known as Raleigh
dissipation function

_1 _1 2
f“—;kvz — Ezi(kxvix -+ kyvl-zy + k,v7,

d
fo - _i - _VVJF

OV
Now the work done by such force Is
dwy = —Fp.dr = —F;.vdt = kv*dt
Will be the amount of energy dissipated due to friction.
The component of the generalized force resulting from the force of friction

Qj:ZiFiarl_ Zaj“arl__z af”arl

aq; bov agq; larlaq]




Rayleigh's Dissipation Force

_ z:éyﬁarl

Lor;aq;

9

Qj =— 00 where F=F(¥)

An example is Stoke’s law whereby a sphere of radius “a” moving at a speed “V” in
a medium of viscosity n experience the friction drag force. The Lagrange’s equation

for dissipative system

di(a'L) aq af_o

t \0q; aq]

For such system two scalar functions “L” and “f™ should be defined to find the

equation of motion.



9. The electromagnetic field is invariant under a gauge transformation of the scalar vector potential given by

A->A+TVyY(rt) & (p—)(p—%i—‘f

Where @ is arbitrary(but differentiable). What effect does this gauge transformation have on the Lagrangian of a
particle moving in the electromagnetic field? Is the motion affected?

15. A point particle moves in space under the influence of a force derivable from a generalized potential of the form
Ur,v)=V(r)+o.L

where r is the radius vector from a fixed point, L is the angular momentum about that point and o is a fixed vector

In space

a) Find the component of force on the particle in both cartesian and spherical polar coordinates on the basis of Eq.
1.58

b) Show that the component in the two coordinate systems are related to each other as in eq. 1.49.

c) Obtain the equation of motion in spherical polar coordinates.

16. A particle moves in a plane under the influence of a force action towards a centre of force, whose magnitude is

1 % — 2¥r
Fem\l——2

Where r is the distance of particle to the centre of force.. Find the generalized potential that will result in such a
force and form that the Lagrangian for the motion in a plane. ( The expression for F represents the force between
two charges in Weber's electrodynamics.)
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